一类超线性不定椭圆问题正解的膨胀估计和先验边界

IF 1.3 2区 数学 Q1 MATHEMATICS
Julián López-Gómez , Juan Carlos Sampedro
{"title":"一类超线性不定椭圆问题正解的膨胀估计和先验边界","authors":"Julián López-Gómez ,&nbsp;Juan Carlos Sampedro","doi":"10.1016/j.na.2024.113693","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we find out some new blow-up estimates for the positive explosive solutions of a paradigmatic class of elliptic boundary value problems of superlinear indefinite type. These estimates are obtained by combining the scaling technique of Gidas–Spruck together with a generalized De Giorgi–Moser weak Harnack inequality found, very recently, by Sirakov (2020; 2022). In a further step, based on a comparison result of Amann and López-Gómez (1998), we will show how these bounds provide us with some sharp a priori estimates for the classical positive solutions of a wide variety of superlinear indefinite problems. It turns out that this is the first general result where the decay rates of the potential in front of the nonlinearity (<span><math><mrow><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> in <span><span>(1.1)</span></span>) do not play any role for getting a priori bounds for the positive solutions when <span><math><mrow><mi>N</mi><mo>≥</mo><mn>3</mn></mrow></math></span>.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"251 ","pages":"Article 113693"},"PeriodicalIF":1.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blow-up estimates and a priori bounds for the positive solutions of a class of superlinear indefinite elliptic problems\",\"authors\":\"Julián López-Gómez ,&nbsp;Juan Carlos Sampedro\",\"doi\":\"10.1016/j.na.2024.113693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we find out some new blow-up estimates for the positive explosive solutions of a paradigmatic class of elliptic boundary value problems of superlinear indefinite type. These estimates are obtained by combining the scaling technique of Gidas–Spruck together with a generalized De Giorgi–Moser weak Harnack inequality found, very recently, by Sirakov (2020; 2022). In a further step, based on a comparison result of Amann and López-Gómez (1998), we will show how these bounds provide us with some sharp a priori estimates for the classical positive solutions of a wide variety of superlinear indefinite problems. It turns out that this is the first general result where the decay rates of the potential in front of the nonlinearity (<span><math><mrow><mi>a</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> in <span><span>(1.1)</span></span>) do not play any role for getting a priori bounds for the positive solutions when <span><math><mrow><mi>N</mi><mo>≥</mo><mn>3</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":49749,\"journal\":{\"name\":\"Nonlinear Analysis-Theory Methods & Applications\",\"volume\":\"251 \",\"pages\":\"Article 113693\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Theory Methods & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0362546X24002128\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24002128","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们为一类典型的超线性不定型椭圆边界值问题的正爆炸解找到了一些新的爆炸估计值。这些估计值是通过将 Gidas-Spruck 的缩放技术与 Sirakov (2020; 2022) 最近发现的广义 De Giorgi-Moser 弱 Harnack 不等式相结合而获得的。下一步,基于阿曼和洛佩斯-戈麦斯(1998)的比较结果,我们将展示这些约束如何为各种超线性不定问题的经典正解提供一些尖锐的先验估计。事实证明,当 N≥3 时,非线性(a(x) 在 (1.1)中)前面的势的衰减率对获得正解的先验边界不起任何作用,这是第一个一般性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Blow-up estimates and a priori bounds for the positive solutions of a class of superlinear indefinite elliptic problems
In this paper we find out some new blow-up estimates for the positive explosive solutions of a paradigmatic class of elliptic boundary value problems of superlinear indefinite type. These estimates are obtained by combining the scaling technique of Gidas–Spruck together with a generalized De Giorgi–Moser weak Harnack inequality found, very recently, by Sirakov (2020; 2022). In a further step, based on a comparison result of Amann and López-Gómez (1998), we will show how these bounds provide us with some sharp a priori estimates for the classical positive solutions of a wide variety of superlinear indefinite problems. It turns out that this is the first general result where the decay rates of the potential in front of the nonlinearity (a(x) in (1.1)) do not play any role for getting a priori bounds for the positive solutions when N3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信