{"title":"在数据中心网络中利用动态小流量超时实现细粒度负载均衡","authors":"Jinbin Hu , Ruiqian Li , Ying Liu , Jin Wang","doi":"10.1016/j.comnet.2024.110867","DOIUrl":null,"url":null,"abstract":"<div><div>In modern datacenter networks (DCNs), load balancing mechanisms are widely deployed to enhance link utilization and alleviate congestion. Recently, a large number of load balancing algorithms have been proposed to spread traffic among the multiple parallel paths. The existing solutions make rerouting decisions for all flows once they experience congestion on a path. They are unable to distinguish between the flows that really need to be rerouted and the flows that potentially have negative effects due to rerouting, resulting in frequently ineffective rerouting. Fine-grained rerouting will also cause severe packet reordering, especially in asymmetric topology scenarios. To address the above issues, we present a fine-grained traffic-differentiated load balancing (TDLB) mechanism, which aims to distinguish flows that are necessarily to be rerouted and reroute traffic in fine-grained without packet reodering. Specifically, TDLB distinguishes the traffic that must be rerouted through the host pair information in the packet header, and selects an optimal path for rerouting. To prevent severe packet reodering caused by excessive path delay differences, TDLB dynamically adjusts the flowlet timeout to segment the traffic and select the optimal path for rerouting. The NS-2 simulation results show that TDLB effectively reduces tail latency and average flow completion time (FCT) for short flows by up to 49% and 46%, respectively, compared to the state-of-the-art load balancing schemes.</div></div>","PeriodicalId":50637,"journal":{"name":"Computer Networks","volume":"255 ","pages":"Article 110867"},"PeriodicalIF":4.4000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards fine-grained load balancing with dynamical flowlet timeout in datacenter networks\",\"authors\":\"Jinbin Hu , Ruiqian Li , Ying Liu , Jin Wang\",\"doi\":\"10.1016/j.comnet.2024.110867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In modern datacenter networks (DCNs), load balancing mechanisms are widely deployed to enhance link utilization and alleviate congestion. Recently, a large number of load balancing algorithms have been proposed to spread traffic among the multiple parallel paths. The existing solutions make rerouting decisions for all flows once they experience congestion on a path. They are unable to distinguish between the flows that really need to be rerouted and the flows that potentially have negative effects due to rerouting, resulting in frequently ineffective rerouting. Fine-grained rerouting will also cause severe packet reordering, especially in asymmetric topology scenarios. To address the above issues, we present a fine-grained traffic-differentiated load balancing (TDLB) mechanism, which aims to distinguish flows that are necessarily to be rerouted and reroute traffic in fine-grained without packet reodering. Specifically, TDLB distinguishes the traffic that must be rerouted through the host pair information in the packet header, and selects an optimal path for rerouting. To prevent severe packet reodering caused by excessive path delay differences, TDLB dynamically adjusts the flowlet timeout to segment the traffic and select the optimal path for rerouting. The NS-2 simulation results show that TDLB effectively reduces tail latency and average flow completion time (FCT) for short flows by up to 49% and 46%, respectively, compared to the state-of-the-art load balancing schemes.</div></div>\",\"PeriodicalId\":50637,\"journal\":{\"name\":\"Computer Networks\",\"volume\":\"255 \",\"pages\":\"Article 110867\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1389128624006996\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1389128624006996","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Towards fine-grained load balancing with dynamical flowlet timeout in datacenter networks
In modern datacenter networks (DCNs), load balancing mechanisms are widely deployed to enhance link utilization and alleviate congestion. Recently, a large number of load balancing algorithms have been proposed to spread traffic among the multiple parallel paths. The existing solutions make rerouting decisions for all flows once they experience congestion on a path. They are unable to distinguish between the flows that really need to be rerouted and the flows that potentially have negative effects due to rerouting, resulting in frequently ineffective rerouting. Fine-grained rerouting will also cause severe packet reordering, especially in asymmetric topology scenarios. To address the above issues, we present a fine-grained traffic-differentiated load balancing (TDLB) mechanism, which aims to distinguish flows that are necessarily to be rerouted and reroute traffic in fine-grained without packet reodering. Specifically, TDLB distinguishes the traffic that must be rerouted through the host pair information in the packet header, and selects an optimal path for rerouting. To prevent severe packet reodering caused by excessive path delay differences, TDLB dynamically adjusts the flowlet timeout to segment the traffic and select the optimal path for rerouting. The NS-2 simulation results show that TDLB effectively reduces tail latency and average flow completion time (FCT) for short flows by up to 49% and 46%, respectively, compared to the state-of-the-art load balancing schemes.
期刊介绍:
Computer Networks is an international, archival journal providing a publication vehicle for complete coverage of all topics of interest to those involved in the computer communications networking area. The audience includes researchers, managers and operators of networks as well as designers and implementors. The Editorial Board will consider any material for publication that is of interest to those groups.