Yilin Wu , Zhaoliang Chen , Ying Zou , Shiping Wang , Wenzhong Guo
{"title":"多视角半监督分类的多尺度结构引导图生成","authors":"Yilin Wu , Zhaoliang Chen , Ying Zou , Shiping Wang , Wenzhong Guo","doi":"10.1016/j.eswa.2024.125677","DOIUrl":null,"url":null,"abstract":"<div><div>Graph convolutional network has emerged as a focal point in machine learning because of its robust graph processing capability. Most existing graph convolutional network-based approaches are designed for single-view data, yet in many practical scenarios, data is represented through multiple views. Moreover, due to the complexity of multiple views, normal graph generation methods cannot mitigate redundancy to generate a high quality graph. Although the ability of graph convolutional network is undeniable, the quality of graph directly affects its performance. To tackle the aforementioned challenges, this paper proposes a multi-scale graph generation deep learning framework, called multi-scale semi-supervised graph generation based multi-view classification, consisting of two modules: edge sampling and path sampling. The former aims to generate an adjacency graph by selecting edges based on the maximum likelihood among graphs from different views. Meanwhile, the latter seeks to construct an adjacency graph according to the characteristics of paths within the graphs. Finally, the statistical technique is employed to extract commonality and generate a fused graph. Extensive experimental results robustly demonstrate the superior performance of our proposed framework, compared to other state-of-the-art multi-view semi-supervised approaches.</div></div>","PeriodicalId":50461,"journal":{"name":"Expert Systems with Applications","volume":"263 ","pages":"Article 125677"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-scale structure-guided graph generation for multi-view semi-supervised classification\",\"authors\":\"Yilin Wu , Zhaoliang Chen , Ying Zou , Shiping Wang , Wenzhong Guo\",\"doi\":\"10.1016/j.eswa.2024.125677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Graph convolutional network has emerged as a focal point in machine learning because of its robust graph processing capability. Most existing graph convolutional network-based approaches are designed for single-view data, yet in many practical scenarios, data is represented through multiple views. Moreover, due to the complexity of multiple views, normal graph generation methods cannot mitigate redundancy to generate a high quality graph. Although the ability of graph convolutional network is undeniable, the quality of graph directly affects its performance. To tackle the aforementioned challenges, this paper proposes a multi-scale graph generation deep learning framework, called multi-scale semi-supervised graph generation based multi-view classification, consisting of two modules: edge sampling and path sampling. The former aims to generate an adjacency graph by selecting edges based on the maximum likelihood among graphs from different views. Meanwhile, the latter seeks to construct an adjacency graph according to the characteristics of paths within the graphs. Finally, the statistical technique is employed to extract commonality and generate a fused graph. Extensive experimental results robustly demonstrate the superior performance of our proposed framework, compared to other state-of-the-art multi-view semi-supervised approaches.</div></div>\",\"PeriodicalId\":50461,\"journal\":{\"name\":\"Expert Systems with Applications\",\"volume\":\"263 \",\"pages\":\"Article 125677\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expert Systems with Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957417424025442\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Systems with Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957417424025442","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Multi-scale structure-guided graph generation for multi-view semi-supervised classification
Graph convolutional network has emerged as a focal point in machine learning because of its robust graph processing capability. Most existing graph convolutional network-based approaches are designed for single-view data, yet in many practical scenarios, data is represented through multiple views. Moreover, due to the complexity of multiple views, normal graph generation methods cannot mitigate redundancy to generate a high quality graph. Although the ability of graph convolutional network is undeniable, the quality of graph directly affects its performance. To tackle the aforementioned challenges, this paper proposes a multi-scale graph generation deep learning framework, called multi-scale semi-supervised graph generation based multi-view classification, consisting of two modules: edge sampling and path sampling. The former aims to generate an adjacency graph by selecting edges based on the maximum likelihood among graphs from different views. Meanwhile, the latter seeks to construct an adjacency graph according to the characteristics of paths within the graphs. Finally, the statistical technique is employed to extract commonality and generate a fused graph. Extensive experimental results robustly demonstrate the superior performance of our proposed framework, compared to other state-of-the-art multi-view semi-supervised approaches.
期刊介绍:
Expert Systems With Applications is an international journal dedicated to the exchange of information on expert and intelligent systems used globally in industry, government, and universities. The journal emphasizes original papers covering the design, development, testing, implementation, and management of these systems, offering practical guidelines. It spans various sectors such as finance, engineering, marketing, law, project management, information management, medicine, and more. The journal also welcomes papers on multi-agent systems, knowledge management, neural networks, knowledge discovery, data mining, and other related areas, excluding applications to military/defense systems.