Max T.M. Ng , Hani S. Mahmassani , Ömer Verbas , Taner Cokyasar , Roman Engelhardt
{"title":"利用共享自主交通服务重新设计大规模多式联运网络","authors":"Max T.M. Ng , Hani S. Mahmassani , Ömer Verbas , Taner Cokyasar , Roman Engelhardt","doi":"10.1016/j.trc.2024.104575","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses a large-scale multimodal transit network design problem, with Shared Autonomous Mobility Services (SAMS) as both transit feeders and an origin-to-destination mode. The framework captures spatial demand and modal characteristics, considers intermodal transfers and express services, determines transit infrastructure investment and path flows, and generates transit routes. A system-optimal multimodal transit network is designed with minimum total door-to-door generalized costs of users and operators, satisfying transit origin–destination demand within a pre-set infrastructure budget. Firstly, the geography, demand, and modes in each zone are characterized with continuous approximation. The decisions of network link investment and multimodal path flows in zonal connection optimization are formulated as a minimum-cost multi-commodity network flow (MCNF) problem and solved efficiently with a mixed-integer linear programming (MILP) solver. Subsequently, the route generation problem is solved by expanding the MCNF formulation to minimize intramodal transfers. The model is illustrated through a set of experiments with the Chicago network comprised of 50 zones and seven modes, under three scenarios. The computational results present savings in traveler journey time and operator cost demonstrating the potential benefits of collaboration between multimodal transit systems and SAMS.</div></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":"168 ","pages":"Article 104575"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Redesigning large-scale multimodal transit networks with shared autonomous mobility services\",\"authors\":\"Max T.M. Ng , Hani S. Mahmassani , Ömer Verbas , Taner Cokyasar , Roman Engelhardt\",\"doi\":\"10.1016/j.trc.2024.104575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study addresses a large-scale multimodal transit network design problem, with Shared Autonomous Mobility Services (SAMS) as both transit feeders and an origin-to-destination mode. The framework captures spatial demand and modal characteristics, considers intermodal transfers and express services, determines transit infrastructure investment and path flows, and generates transit routes. A system-optimal multimodal transit network is designed with minimum total door-to-door generalized costs of users and operators, satisfying transit origin–destination demand within a pre-set infrastructure budget. Firstly, the geography, demand, and modes in each zone are characterized with continuous approximation. The decisions of network link investment and multimodal path flows in zonal connection optimization are formulated as a minimum-cost multi-commodity network flow (MCNF) problem and solved efficiently with a mixed-integer linear programming (MILP) solver. Subsequently, the route generation problem is solved by expanding the MCNF formulation to minimize intramodal transfers. The model is illustrated through a set of experiments with the Chicago network comprised of 50 zones and seven modes, under three scenarios. The computational results present savings in traveler journey time and operator cost demonstrating the potential benefits of collaboration between multimodal transit systems and SAMS.</div></div>\",\"PeriodicalId\":54417,\"journal\":{\"name\":\"Transportation Research Part C-Emerging Technologies\",\"volume\":\"168 \",\"pages\":\"Article 104575\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part C-Emerging Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968090X24000962\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X24000962","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Redesigning large-scale multimodal transit networks with shared autonomous mobility services
This study addresses a large-scale multimodal transit network design problem, with Shared Autonomous Mobility Services (SAMS) as both transit feeders and an origin-to-destination mode. The framework captures spatial demand and modal characteristics, considers intermodal transfers and express services, determines transit infrastructure investment and path flows, and generates transit routes. A system-optimal multimodal transit network is designed with minimum total door-to-door generalized costs of users and operators, satisfying transit origin–destination demand within a pre-set infrastructure budget. Firstly, the geography, demand, and modes in each zone are characterized with continuous approximation. The decisions of network link investment and multimodal path flows in zonal connection optimization are formulated as a minimum-cost multi-commodity network flow (MCNF) problem and solved efficiently with a mixed-integer linear programming (MILP) solver. Subsequently, the route generation problem is solved by expanding the MCNF formulation to minimize intramodal transfers. The model is illustrated through a set of experiments with the Chicago network comprised of 50 zones and seven modes, under three scenarios. The computational results present savings in traveler journey time and operator cost demonstrating the potential benefits of collaboration between multimodal transit systems and SAMS.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.