Yingran Guo, Hao Zhang, Lin Chen, Meng Zhao, Yanhua Yang
{"title":"利用 COSINE 子信道编码和人工神经网络快速预测 FEBA 中的关键参数","authors":"Yingran Guo, Hao Zhang, Lin Chen, Meng Zhao, Yanhua Yang","doi":"10.1016/j.nucengdes.2024.113709","DOIUrl":null,"url":null,"abstract":"<div><div>Numerical techniques have emerged as an essential tool for operators and designers to preemptively acquire key parameters in accidents analysis. However, due to insufficient experience, it is difficult for them to obtain satisfactory numerical results. Moreover, the uncertainty analysis and quantification necessitate the simulation of a substantial number of samples, which requires a significant amount of computational time. Therefore, the development of a fast prediction model becomes imperative. In this work, a prediction model based on the in-house COSINE subchannel code and Multi-Head Perceptron (MHP) is developed. The COSINE subchannel code is employed to provide data sets for training neural networks. Firstly, the numerical results of COSINE subchannel code are compared with experimental data to ensure the accuracy of data sets. Secondly, input features for neural networks are selected by evaluating the impact of input parameters on numerical results, and a series of simulations is carried out to generate data sets. Then, a comparative analysis was conducted between the Multi-Layer Perceptron (MLP) and Support Vector Regression (SVR) models, and the MLP model performs better. Subsequently, the MLP was compared with the MHP, demonstrating the advantage of MHP model. Based on this, the predictions are conducted using the MHP model and the distribution of key parameters is compared with that obtained by COSINE subchannel code. The results illustrate that developed MHP model is an efficient tool for predicting key parameters during the reflooding phase.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"430 ","pages":"Article 113709"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast prediction of key parameters in FEBA using the COSINE subchannel code and artificial neural network\",\"authors\":\"Yingran Guo, Hao Zhang, Lin Chen, Meng Zhao, Yanhua Yang\",\"doi\":\"10.1016/j.nucengdes.2024.113709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Numerical techniques have emerged as an essential tool for operators and designers to preemptively acquire key parameters in accidents analysis. However, due to insufficient experience, it is difficult for them to obtain satisfactory numerical results. Moreover, the uncertainty analysis and quantification necessitate the simulation of a substantial number of samples, which requires a significant amount of computational time. Therefore, the development of a fast prediction model becomes imperative. In this work, a prediction model based on the in-house COSINE subchannel code and Multi-Head Perceptron (MHP) is developed. The COSINE subchannel code is employed to provide data sets for training neural networks. Firstly, the numerical results of COSINE subchannel code are compared with experimental data to ensure the accuracy of data sets. Secondly, input features for neural networks are selected by evaluating the impact of input parameters on numerical results, and a series of simulations is carried out to generate data sets. Then, a comparative analysis was conducted between the Multi-Layer Perceptron (MLP) and Support Vector Regression (SVR) models, and the MLP model performs better. Subsequently, the MLP was compared with the MHP, demonstrating the advantage of MHP model. Based on this, the predictions are conducted using the MHP model and the distribution of key parameters is compared with that obtained by COSINE subchannel code. The results illustrate that developed MHP model is an efficient tool for predicting key parameters during the reflooding phase.</div></div>\",\"PeriodicalId\":19170,\"journal\":{\"name\":\"Nuclear Engineering and Design\",\"volume\":\"430 \",\"pages\":\"Article 113709\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029549324008094\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324008094","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Fast prediction of key parameters in FEBA using the COSINE subchannel code and artificial neural network
Numerical techniques have emerged as an essential tool for operators and designers to preemptively acquire key parameters in accidents analysis. However, due to insufficient experience, it is difficult for them to obtain satisfactory numerical results. Moreover, the uncertainty analysis and quantification necessitate the simulation of a substantial number of samples, which requires a significant amount of computational time. Therefore, the development of a fast prediction model becomes imperative. In this work, a prediction model based on the in-house COSINE subchannel code and Multi-Head Perceptron (MHP) is developed. The COSINE subchannel code is employed to provide data sets for training neural networks. Firstly, the numerical results of COSINE subchannel code are compared with experimental data to ensure the accuracy of data sets. Secondly, input features for neural networks are selected by evaluating the impact of input parameters on numerical results, and a series of simulations is carried out to generate data sets. Then, a comparative analysis was conducted between the Multi-Layer Perceptron (MLP) and Support Vector Regression (SVR) models, and the MLP model performs better. Subsequently, the MLP was compared with the MHP, demonstrating the advantage of MHP model. Based on this, the predictions are conducted using the MHP model and the distribution of key parameters is compared with that obtained by COSINE subchannel code. The results illustrate that developed MHP model is an efficient tool for predicting key parameters during the reflooding phase.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.