基于多元优化 GRU 模型的核电站反应堆功率预测研究

Canyi Tan , Bo Wang , Jiangkuan Li , Jie Chen , Biao Liang , Shangcai Zheng , Rui Han , Ruifeng Tian , Sichao Tan
{"title":"基于多元优化 GRU 模型的核电站反应堆功率预测研究","authors":"Canyi Tan ,&nbsp;Bo Wang ,&nbsp;Jiangkuan Li ,&nbsp;Jie Chen ,&nbsp;Biao Liang ,&nbsp;Shangcai Zheng ,&nbsp;Rui Han ,&nbsp;Ruifeng Tian ,&nbsp;Sichao Tan","doi":"10.1016/j.jandt.2024.10.001","DOIUrl":null,"url":null,"abstract":"<div><div>In the operation of nuclear power plants, the accurate prediction of power change trends is crucial for ensuring safety and stability. In this work, a ML-GRU-RS method, based on model-agnostic meta-learning (MAML), gate recurrent unit (GRU), and random search optimization, is proposed for the long-term prediction of key parameters of nuclear power plants. This method combines the fast adaptability of MAML, the time series data processing capability of GRU, and the optimization efficiency of random search to achieve high-precision predictions under varying power conditions. The results demonstrate that this method can effectively predict the future trends of key parameters in nuclear power plants. The ability of operators to anticipate these trends has been significantly enhanced, contributing to the overall safety of the nuclear power plants.</div></div>","PeriodicalId":100689,"journal":{"name":"International Journal of Advanced Nuclear Reactor Design and Technology","volume":"6 2","pages":"Pages 78-89"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on reactor power prediction of nuclear power plant based on multivariate optimization GRU model\",\"authors\":\"Canyi Tan ,&nbsp;Bo Wang ,&nbsp;Jiangkuan Li ,&nbsp;Jie Chen ,&nbsp;Biao Liang ,&nbsp;Shangcai Zheng ,&nbsp;Rui Han ,&nbsp;Ruifeng Tian ,&nbsp;Sichao Tan\",\"doi\":\"10.1016/j.jandt.2024.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the operation of nuclear power plants, the accurate prediction of power change trends is crucial for ensuring safety and stability. In this work, a ML-GRU-RS method, based on model-agnostic meta-learning (MAML), gate recurrent unit (GRU), and random search optimization, is proposed for the long-term prediction of key parameters of nuclear power plants. This method combines the fast adaptability of MAML, the time series data processing capability of GRU, and the optimization efficiency of random search to achieve high-precision predictions under varying power conditions. The results demonstrate that this method can effectively predict the future trends of key parameters in nuclear power plants. The ability of operators to anticipate these trends has been significantly enhanced, contributing to the overall safety of the nuclear power plants.</div></div>\",\"PeriodicalId\":100689,\"journal\":{\"name\":\"International Journal of Advanced Nuclear Reactor Design and Technology\",\"volume\":\"6 2\",\"pages\":\"Pages 78-89\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Nuclear Reactor Design and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468605024000309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Nuclear Reactor Design and Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468605024000309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在核电站运行过程中,准确预测功率变化趋势对确保安全和稳定至关重要。本文提出了一种基于模型识别元学习(MAML)、门递归单元(GRU)和随机搜索优化的 ML-GRU-RS 方法,用于核电站关键参数的长期预测。该方法结合了 MAML 的快速适应性、GRU 的时间序列数据处理能力和随机搜索的优化效率,实现了不同功率条件下的高精度预测。结果表明,该方法可有效预测核电站关键参数的未来趋势。操作人员预测这些趋势的能力大大提高,有助于核电站的整体安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on reactor power prediction of nuclear power plant based on multivariate optimization GRU model
In the operation of nuclear power plants, the accurate prediction of power change trends is crucial for ensuring safety and stability. In this work, a ML-GRU-RS method, based on model-agnostic meta-learning (MAML), gate recurrent unit (GRU), and random search optimization, is proposed for the long-term prediction of key parameters of nuclear power plants. This method combines the fast adaptability of MAML, the time series data processing capability of GRU, and the optimization efficiency of random search to achieve high-precision predictions under varying power conditions. The results demonstrate that this method can effectively predict the future trends of key parameters in nuclear power plants. The ability of operators to anticipate these trends has been significantly enhanced, contributing to the overall safety of the nuclear power plants.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信