JinZe Wu , GuoXiu Li , HongMeng Li , Shuo Zhang , ZhaoPu Yao , Tao Zhang
{"title":"电点火模式下高性能绿色推进剂的液滴动力学行为和燃烧特性实验研究","authors":"JinZe Wu , GuoXiu Li , HongMeng Li , Shuo Zhang , ZhaoPu Yao , Tao Zhang","doi":"10.1016/j.actaastro.2024.11.003","DOIUrl":null,"url":null,"abstract":"<div><div>High performance green propellant represented by ammonium dinitramide-based liquid propellant and its new ignition method are the research hotspots of space propulsion in the 21st century. Exploring the complex multi-scale physical properties of multi-component ammonium dinitramide-based liquid propellant droplets in the electrical ignition mode has wide application significance for spray, propulsion system design and combustion control. The droplet dynamics behavior and combustion characteristics of propellant droplets at different ignition voltages were studied experimentally. The droplet dynamics behavior during the evaporation process, including violent volume oscillation, approximate steady-state expansion, contraction, secondary expansion, puffing and micro-explosion, have been determined by the generation, growth, and discharge of vapor bubbles. In the initial evaporation process, the heterogeneous nucleation is dominant. As the droplet is continuously heated, homogenization nucleation gradually dominates. The main physical and chemical mechanisms of bubble evolution driven by temperature involve methanol boiling, water overheating, ammonium dinitramide decomposition and combustion reaction between vapor molecules. Increasing the ignition voltage increases the droplet dynamics behavior and the combustion, but promotes the combustion instability. Increasing the ignition voltage increases the ignition delay time, puffing delay time, droplet lifetime, maximum temperature of droplet, and reduces the ignition critical diameter. It is proposed that the method of suppressing the droplet breakup dynamics at decomposition area and enhancing the droplet breakup dynamics at the combustion area are conducive to the combustion control of the thruster in electrical ignition mode. This research provides novel insight into the study of the electrical ignition mechanism of liquid fuels.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 653-668"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on droplet dynamics behavior and combustion characteristics of high performance green propellant in electrical ignition mode\",\"authors\":\"JinZe Wu , GuoXiu Li , HongMeng Li , Shuo Zhang , ZhaoPu Yao , Tao Zhang\",\"doi\":\"10.1016/j.actaastro.2024.11.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High performance green propellant represented by ammonium dinitramide-based liquid propellant and its new ignition method are the research hotspots of space propulsion in the 21st century. Exploring the complex multi-scale physical properties of multi-component ammonium dinitramide-based liquid propellant droplets in the electrical ignition mode has wide application significance for spray, propulsion system design and combustion control. The droplet dynamics behavior and combustion characteristics of propellant droplets at different ignition voltages were studied experimentally. The droplet dynamics behavior during the evaporation process, including violent volume oscillation, approximate steady-state expansion, contraction, secondary expansion, puffing and micro-explosion, have been determined by the generation, growth, and discharge of vapor bubbles. In the initial evaporation process, the heterogeneous nucleation is dominant. As the droplet is continuously heated, homogenization nucleation gradually dominates. The main physical and chemical mechanisms of bubble evolution driven by temperature involve methanol boiling, water overheating, ammonium dinitramide decomposition and combustion reaction between vapor molecules. Increasing the ignition voltage increases the droplet dynamics behavior and the combustion, but promotes the combustion instability. Increasing the ignition voltage increases the ignition delay time, puffing delay time, droplet lifetime, maximum temperature of droplet, and reduces the ignition critical diameter. It is proposed that the method of suppressing the droplet breakup dynamics at decomposition area and enhancing the droplet breakup dynamics at the combustion area are conducive to the combustion control of the thruster in electrical ignition mode. This research provides novel insight into the study of the electrical ignition mechanism of liquid fuels.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"226 \",\"pages\":\"Pages 653-668\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094576524006507\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524006507","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
Experimental study on droplet dynamics behavior and combustion characteristics of high performance green propellant in electrical ignition mode
High performance green propellant represented by ammonium dinitramide-based liquid propellant and its new ignition method are the research hotspots of space propulsion in the 21st century. Exploring the complex multi-scale physical properties of multi-component ammonium dinitramide-based liquid propellant droplets in the electrical ignition mode has wide application significance for spray, propulsion system design and combustion control. The droplet dynamics behavior and combustion characteristics of propellant droplets at different ignition voltages were studied experimentally. The droplet dynamics behavior during the evaporation process, including violent volume oscillation, approximate steady-state expansion, contraction, secondary expansion, puffing and micro-explosion, have been determined by the generation, growth, and discharge of vapor bubbles. In the initial evaporation process, the heterogeneous nucleation is dominant. As the droplet is continuously heated, homogenization nucleation gradually dominates. The main physical and chemical mechanisms of bubble evolution driven by temperature involve methanol boiling, water overheating, ammonium dinitramide decomposition and combustion reaction between vapor molecules. Increasing the ignition voltage increases the droplet dynamics behavior and the combustion, but promotes the combustion instability. Increasing the ignition voltage increases the ignition delay time, puffing delay time, droplet lifetime, maximum temperature of droplet, and reduces the ignition critical diameter. It is proposed that the method of suppressing the droplet breakup dynamics at decomposition area and enhancing the droplet breakup dynamics at the combustion area are conducive to the combustion control of the thruster in electrical ignition mode. This research provides novel insight into the study of the electrical ignition mechanism of liquid fuels.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.