宽转速范围内斜爆燃发动机流动和燃烧特性的数值研究

IF 3.1 2区 物理与天体物理 Q1 ENGINEERING, AEROSPACE
Yang Wang , Fang Chen , Yu Meng , Elena Victorovna Mikhalchenko , Evgeniya Igorevna Skryleva
{"title":"宽转速范围内斜爆燃发动机流动和燃烧特性的数值研究","authors":"Yang Wang ,&nbsp;Fang Chen ,&nbsp;Yu Meng ,&nbsp;Elena Victorovna Mikhalchenko ,&nbsp;Evgeniya Igorevna Skryleva","doi":"10.1016/j.actaastro.2024.10.067","DOIUrl":null,"url":null,"abstract":"<div><div>Ensuring safe flight is a fundamental prerequisite for developing hypersonic propulsion systems. A comprehensive investigation of the steady boundary associated with oblique detonation wave in a wide speed range was conducted, with the aim of exploring the feasibility of oblique detonation engine across a diverse array of flight conditions. In this study, the wedge angle applicable in a wide-speed range was acquired via the analysis of oblique detonation wave polar curve. The configuration of the internal injection oblique detonation engine was subsequently designed and established, considering the effect of fuel-air inhomogeneity and complex wave system interactions within a confined combustor. The compressible Euler equations coupled with a 9-species and 19-step chemical reaction mechanism are employed to simulate the oblique detonation process. Ultimately, the safe flight envelope of an air-breathing vehicle equipped with the internal injection oblique detonation engine is mapped across a broad range of Mach numbers, demonstrating the engine’s capability to operate within the Mach 8 to 12 range. Furthermore, the findings reveal that decreasing either the flight Mach number or altitude results in unsteady oblique detonation wave within the internal injection oblique detonation engine combustor, however, reducing the equivalence ratio can stabilize the oblique detonation wave once again. This study provides valuable guidance for the design and wide-speed-range operation of an internal injection oblique detonation engine.</div></div>","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"226 ","pages":"Pages 637-647"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical study on flow and combustion properties of oblique detonation engine in a wide speed range\",\"authors\":\"Yang Wang ,&nbsp;Fang Chen ,&nbsp;Yu Meng ,&nbsp;Elena Victorovna Mikhalchenko ,&nbsp;Evgeniya Igorevna Skryleva\",\"doi\":\"10.1016/j.actaastro.2024.10.067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ensuring safe flight is a fundamental prerequisite for developing hypersonic propulsion systems. A comprehensive investigation of the steady boundary associated with oblique detonation wave in a wide speed range was conducted, with the aim of exploring the feasibility of oblique detonation engine across a diverse array of flight conditions. In this study, the wedge angle applicable in a wide-speed range was acquired via the analysis of oblique detonation wave polar curve. The configuration of the internal injection oblique detonation engine was subsequently designed and established, considering the effect of fuel-air inhomogeneity and complex wave system interactions within a confined combustor. The compressible Euler equations coupled with a 9-species and 19-step chemical reaction mechanism are employed to simulate the oblique detonation process. Ultimately, the safe flight envelope of an air-breathing vehicle equipped with the internal injection oblique detonation engine is mapped across a broad range of Mach numbers, demonstrating the engine’s capability to operate within the Mach 8 to 12 range. Furthermore, the findings reveal that decreasing either the flight Mach number or altitude results in unsteady oblique detonation wave within the internal injection oblique detonation engine combustor, however, reducing the equivalence ratio can stabilize the oblique detonation wave once again. This study provides valuable guidance for the design and wide-speed-range operation of an internal injection oblique detonation engine.</div></div>\",\"PeriodicalId\":44971,\"journal\":{\"name\":\"Acta Astronautica\",\"volume\":\"226 \",\"pages\":\"Pages 637-647\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Astronautica\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0094576524006416\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0094576524006416","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

确保安全飞行是开发高超音速推进系统的基本前提。为了探索斜向爆轰发动机在各种飞行条件下的可行性,我们对斜向爆轰波在宽速度范围内的稳定边界进行了全面研究。在这项研究中,通过分析斜爆轰波极坐标曲线,获得了适用于宽速度范围的楔角。随后,考虑到燃料-空气不均匀性和密闭燃烧器内复杂波系相互作用的影响,设计并确定了内部喷射斜爆燃发动机的配置。采用可压缩欧拉方程和 9 种 19 步化学反应机制来模拟斜爆过程。最终,绘制了配备内部喷射斜爆燃发动机的喷气式飞行器在较大马赫数范围内的安全飞行包络线,证明该发动机有能力在 8 至 12 马赫范围内工作。此外,研究结果表明,降低飞行马赫数或飞行高度都会导致内部喷射斜压起爆发动机燃烧器内的斜压起爆波不稳定,但降低当量比可以再次稳定斜压起爆波。这项研究为内喷斜爆发动机的设计和宽速范围运行提供了宝贵的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Numerical study on flow and combustion properties of oblique detonation engine in a wide speed range
Ensuring safe flight is a fundamental prerequisite for developing hypersonic propulsion systems. A comprehensive investigation of the steady boundary associated with oblique detonation wave in a wide speed range was conducted, with the aim of exploring the feasibility of oblique detonation engine across a diverse array of flight conditions. In this study, the wedge angle applicable in a wide-speed range was acquired via the analysis of oblique detonation wave polar curve. The configuration of the internal injection oblique detonation engine was subsequently designed and established, considering the effect of fuel-air inhomogeneity and complex wave system interactions within a confined combustor. The compressible Euler equations coupled with a 9-species and 19-step chemical reaction mechanism are employed to simulate the oblique detonation process. Ultimately, the safe flight envelope of an air-breathing vehicle equipped with the internal injection oblique detonation engine is mapped across a broad range of Mach numbers, demonstrating the engine’s capability to operate within the Mach 8 to 12 range. Furthermore, the findings reveal that decreasing either the flight Mach number or altitude results in unsteady oblique detonation wave within the internal injection oblique detonation engine combustor, however, reducing the equivalence ratio can stabilize the oblique detonation wave once again. This study provides valuable guidance for the design and wide-speed-range operation of an internal injection oblique detonation engine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Astronautica
Acta Astronautica 工程技术-工程:宇航
CiteScore
7.20
自引率
22.90%
发文量
599
审稿时长
53 days
期刊介绍: Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to: The peaceful scientific exploration of space, Its exploitation for human welfare and progress, Conception, design, development and operation of space-borne and Earth-based systems, In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信