Chiara Mandolfino, Lucia Cassettari, Marco Pizzorni, Luigi Benvenuto, Enrico Lertora
{"title":"等离子体处理的粘合剂粘结热塑性复合材料的技术经济和环境综合比较","authors":"Chiara Mandolfino, Lucia Cassettari, Marco Pizzorni, Luigi Benvenuto, Enrico Lertora","doi":"10.1016/j.jajp.2024.100268","DOIUrl":null,"url":null,"abstract":"<div><div>Thermoplastic composites are gaining attention for their ability to support a circular economy, shifting away from traditional cost-driven design. Unlike thermoset composites, commonly used in automotive and aerospace sectors, thermoplastic composites offer recyclability, promoting environmental and economic sustainability. Adhesive bonding in thermoplastic composites provides even stress distribution, maintaining structural integrity and reducing delamination risks, which is crucial for lightweight design in transport and renewable energy applications. Optimising adhesive bonded joints is essential to improve structural integrity, efficiency and sustainability. This involves balancing technical, economic and environmental factors, with surface preparation, plasma treatment in particular, playing a key role.</div><div>This paper provides a comprehensive techno-economic-environmental comparison of adhesive bonded joints. The study integrates cost-effectiveness, production efficiency and environmental impact assessments to guide informed decision-making. The methodology includes preparing substrates with low-pressure plasma surface treatments, forming adhesive-bonded joints with different adhesives, and optimising process parameters using Response Surface Methodology (RSM). A Life Cycle Assessment (LCA) on optimised scenarios enhances Tensile Shear Strength (TSS). The study concludes with a comprehensive comparison, offering insights for resilient, efficient and sustainable engineering solutions.</div></div>","PeriodicalId":34313,"journal":{"name":"Journal of Advanced Joining Processes","volume":"10 ","pages":"Article 100268"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive techno-economic and environmental comparison of plasma-treated adhesive-bonded thermoplastic composites\",\"authors\":\"Chiara Mandolfino, Lucia Cassettari, Marco Pizzorni, Luigi Benvenuto, Enrico Lertora\",\"doi\":\"10.1016/j.jajp.2024.100268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Thermoplastic composites are gaining attention for their ability to support a circular economy, shifting away from traditional cost-driven design. Unlike thermoset composites, commonly used in automotive and aerospace sectors, thermoplastic composites offer recyclability, promoting environmental and economic sustainability. Adhesive bonding in thermoplastic composites provides even stress distribution, maintaining structural integrity and reducing delamination risks, which is crucial for lightweight design in transport and renewable energy applications. Optimising adhesive bonded joints is essential to improve structural integrity, efficiency and sustainability. This involves balancing technical, economic and environmental factors, with surface preparation, plasma treatment in particular, playing a key role.</div><div>This paper provides a comprehensive techno-economic-environmental comparison of adhesive bonded joints. The study integrates cost-effectiveness, production efficiency and environmental impact assessments to guide informed decision-making. The methodology includes preparing substrates with low-pressure plasma surface treatments, forming adhesive-bonded joints with different adhesives, and optimising process parameters using Response Surface Methodology (RSM). A Life Cycle Assessment (LCA) on optimised scenarios enhances Tensile Shear Strength (TSS). The study concludes with a comprehensive comparison, offering insights for resilient, efficient and sustainable engineering solutions.</div></div>\",\"PeriodicalId\":34313,\"journal\":{\"name\":\"Journal of Advanced Joining Processes\",\"volume\":\"10 \",\"pages\":\"Article 100268\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Joining Processes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666330924000840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Joining Processes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666330924000840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
A comprehensive techno-economic and environmental comparison of plasma-treated adhesive-bonded thermoplastic composites
Thermoplastic composites are gaining attention for their ability to support a circular economy, shifting away from traditional cost-driven design. Unlike thermoset composites, commonly used in automotive and aerospace sectors, thermoplastic composites offer recyclability, promoting environmental and economic sustainability. Adhesive bonding in thermoplastic composites provides even stress distribution, maintaining structural integrity and reducing delamination risks, which is crucial for lightweight design in transport and renewable energy applications. Optimising adhesive bonded joints is essential to improve structural integrity, efficiency and sustainability. This involves balancing technical, economic and environmental factors, with surface preparation, plasma treatment in particular, playing a key role.
This paper provides a comprehensive techno-economic-environmental comparison of adhesive bonded joints. The study integrates cost-effectiveness, production efficiency and environmental impact assessments to guide informed decision-making. The methodology includes preparing substrates with low-pressure plasma surface treatments, forming adhesive-bonded joints with different adhesives, and optimising process parameters using Response Surface Methodology (RSM). A Life Cycle Assessment (LCA) on optimised scenarios enhances Tensile Shear Strength (TSS). The study concludes with a comprehensive comparison, offering insights for resilient, efficient and sustainable engineering solutions.