{"title":"多孔介质中金属熔体渗入及凝固效应的数值研究","authors":"Liang Chen, Yan Xiang, Di Fang, Weimin Ma","doi":"10.1016/j.nucengdes.2024.113687","DOIUrl":null,"url":null,"abstract":"<div><div>The melt infiltration in porous debris is of importance to severe accident prediction and mitigation in nuclear power plants (NPPs), but its mechanism remains elusive. In this study, a computational fluid dynamics (CFD) model is proposed to simulate the evolution of melt infiltration within porous media, incorporating both solidification and melting processes. The CFD model is validated against the experiment (REMCOD facility) and Moving Particle Semi-implicit (MPS) simulation results. Building upon this validated model, the influence of the melt superheat, the initial particle temperature, and its surface wettability on melt infiltration dynamics are mainly analyzed. It is found that increased initial melt superheat enhances melt infiltration length and rate; higher initial particle temperatures promote deeper and faster infiltration, while lower temperatures may result in solidification that blocks further infiltration. Additionally, the wettable particulate bed can enhance melt relocation and heat transfer, but it also accelerates the solidification of the melt, which complicates the infiltration process. Furthermore, phase changes could intensify melt flow instability. This work may expand our understanding of melt infiltration dynamics and pave the way to severe accident modeling in NPPs.</div></div>","PeriodicalId":19170,"journal":{"name":"Nuclear Engineering and Design","volume":"430 ","pages":"Article 113687"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A numerical study on metallic melt infiltration in porous media and the effect of solidification\",\"authors\":\"Liang Chen, Yan Xiang, Di Fang, Weimin Ma\",\"doi\":\"10.1016/j.nucengdes.2024.113687\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The melt infiltration in porous debris is of importance to severe accident prediction and mitigation in nuclear power plants (NPPs), but its mechanism remains elusive. In this study, a computational fluid dynamics (CFD) model is proposed to simulate the evolution of melt infiltration within porous media, incorporating both solidification and melting processes. The CFD model is validated against the experiment (REMCOD facility) and Moving Particle Semi-implicit (MPS) simulation results. Building upon this validated model, the influence of the melt superheat, the initial particle temperature, and its surface wettability on melt infiltration dynamics are mainly analyzed. It is found that increased initial melt superheat enhances melt infiltration length and rate; higher initial particle temperatures promote deeper and faster infiltration, while lower temperatures may result in solidification that blocks further infiltration. Additionally, the wettable particulate bed can enhance melt relocation and heat transfer, but it also accelerates the solidification of the melt, which complicates the infiltration process. Furthermore, phase changes could intensify melt flow instability. This work may expand our understanding of melt infiltration dynamics and pave the way to severe accident modeling in NPPs.</div></div>\",\"PeriodicalId\":19170,\"journal\":{\"name\":\"Nuclear Engineering and Design\",\"volume\":\"430 \",\"pages\":\"Article 113687\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Engineering and Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0029549324007878\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029549324007878","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
A numerical study on metallic melt infiltration in porous media and the effect of solidification
The melt infiltration in porous debris is of importance to severe accident prediction and mitigation in nuclear power plants (NPPs), but its mechanism remains elusive. In this study, a computational fluid dynamics (CFD) model is proposed to simulate the evolution of melt infiltration within porous media, incorporating both solidification and melting processes. The CFD model is validated against the experiment (REMCOD facility) and Moving Particle Semi-implicit (MPS) simulation results. Building upon this validated model, the influence of the melt superheat, the initial particle temperature, and its surface wettability on melt infiltration dynamics are mainly analyzed. It is found that increased initial melt superheat enhances melt infiltration length and rate; higher initial particle temperatures promote deeper and faster infiltration, while lower temperatures may result in solidification that blocks further infiltration. Additionally, the wettable particulate bed can enhance melt relocation and heat transfer, but it also accelerates the solidification of the melt, which complicates the infiltration process. Furthermore, phase changes could intensify melt flow instability. This work may expand our understanding of melt infiltration dynamics and pave the way to severe accident modeling in NPPs.
期刊介绍:
Nuclear Engineering and Design covers the wide range of disciplines involved in the engineering, design, safety and construction of nuclear fission reactors. The Editors welcome papers both on applied and innovative aspects and developments in nuclear science and technology.
Fundamentals of Reactor Design include:
• Thermal-Hydraulics and Core Physics
• Safety Analysis, Risk Assessment (PSA)
• Structural and Mechanical Engineering
• Materials Science
• Fuel Behavior and Design
• Structural Plant Design
• Engineering of Reactor Components
• Experiments
Aspects beyond fundamentals of Reactor Design covered:
• Accident Mitigation Measures
• Reactor Control Systems
• Licensing Issues
• Safeguard Engineering
• Economy of Plants
• Reprocessing / Waste Disposal
• Applications of Nuclear Energy
• Maintenance
• Decommissioning
Papers on new reactor ideas and developments (Generation IV reactors) such as inherently safe modular HTRs, High Performance LWRs/HWRs and LMFBs/GFR will be considered; Actinide Burners, Accelerator Driven Systems, Energy Amplifiers and other special designs of power and research reactors and their applications are also encouraged.