离散不定仿射极小曲面的奇点

IF 0.6 4区 数学 Q3 MATHEMATICS
Marcos Craizer
{"title":"离散不定仿射极小曲面的奇点","authors":"Marcos Craizer","doi":"10.1016/j.difgeo.2024.102206","DOIUrl":null,"url":null,"abstract":"<div><div>A smooth affine minimal surface with indefinite metric can be obtained from a pair of smooth non-intersecting spatial curves by Lelieuvre's formulas. These surfaces may present singularities, which are generically cuspidal edges and swallowtails. By discretizing the initial curves, one can obtain by the discrete Lelieuvre's formulas a discrete affine minimal surface with indefinite metric. The aim of this paper is to define the singular edges and vertices of the corresponding discrete asymptotic net in such a way that the most relevant properties of the singular set of the smooth version remain valid.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102206"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singularities of discrete indefinite affine minimal surfaces\",\"authors\":\"Marcos Craizer\",\"doi\":\"10.1016/j.difgeo.2024.102206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A smooth affine minimal surface with indefinite metric can be obtained from a pair of smooth non-intersecting spatial curves by Lelieuvre's formulas. These surfaces may present singularities, which are generically cuspidal edges and swallowtails. By discretizing the initial curves, one can obtain by the discrete Lelieuvre's formulas a discrete affine minimal surface with indefinite metric. The aim of this paper is to define the singular edges and vertices of the corresponding discrete asymptotic net in such a way that the most relevant properties of the singular set of the smooth version remain valid.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"97 \",\"pages\":\"Article 102206\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000998\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000998","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

根据勒里厄尔公式,可以从一对平滑的非相交空间曲线得到具有不定度量的平滑仿射极小曲面。这些曲面可能会出现奇点,一般是尖顶边缘和燕尾形。通过将初始曲线离散化,可以用离散的勒里厄尔公式得到具有不定度量的离散仿射极小曲面。本文的目的是定义相应离散渐近网的奇异边和顶点,从而使光滑版本奇异集的最相关特性保持有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singularities of discrete indefinite affine minimal surfaces
A smooth affine minimal surface with indefinite metric can be obtained from a pair of smooth non-intersecting spatial curves by Lelieuvre's formulas. These surfaces may present singularities, which are generically cuspidal edges and swallowtails. By discretizing the initial curves, one can obtain by the discrete Lelieuvre's formulas a discrete affine minimal surface with indefinite metric. The aim of this paper is to define the singular edges and vertices of the corresponding discrete asymptotic net in such a way that the most relevant properties of the singular set of the smooth version remain valid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信