{"title":"欧几里得空间中保形平莫比乌斯等参数子平面的分类","authors":"M.S.R. Antas","doi":"10.1016/j.difgeo.2024.102201","DOIUrl":null,"url":null,"abstract":"<div><div>The aim of this article is to classify umbilic-free isometric immersions <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, of a conformally flat manifold which are Moebius isoparametric.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102201"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of conformally flat Moebius isoparametric submanifolds in the Euclidean space\",\"authors\":\"M.S.R. Antas\",\"doi\":\"10.1016/j.difgeo.2024.102201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aim of this article is to classify umbilic-free isometric immersions <span><math><mi>f</mi><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>m</mi></mrow></msup></math></span>, <span><math><mi>n</mi><mo>≥</mo><mn>4</mn></math></span>, of a conformally flat manifold which are Moebius isoparametric.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"97 \",\"pages\":\"Article 102201\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000949\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000949","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.