李群上的左变伪黎曼度量:空锥

IF 0.6 4区 数学 Q3 MATHEMATICS
Sigbjørn Hervik
{"title":"李群上的左变伪黎曼度量:空锥","authors":"Sigbjørn Hervik","doi":"10.1016/j.difgeo.2024.102205","DOIUrl":null,"url":null,"abstract":"<div><div>We study left-invariant pseudo-Riemannian metrics on Lie groups using the moving bracket approach of the corresponding Lie algebra. We focus on metrics where the Lie algebra is in the null cone of the <span><math><mi>G</mi><mo>=</mo><mi>O</mi><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-action; i.e., Lie algebras <em>μ</em> where zero is in the closure of the orbits: <span><math><mn>0</mn><mo>∈</mo><mover><mrow><mi>G</mi><mo>⋅</mo><mi>μ</mi></mrow><mo>‾</mo></mover></math></span>. We provide examples of such Lie groups in various signatures and give some general results. For signatures <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> we classify all cases belonging to the null cone. More generally, we show that all nilpotent and completely solvable Lie algebras are in the null cone of some <span><math><mi>O</mi><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> action. In addition, several examples of non-trivial Levi-decomposable Lie algebras in the null cone are given.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102205"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Left-invariant pseudo-Riemannian metrics on Lie groups: The null cone\",\"authors\":\"Sigbjørn Hervik\",\"doi\":\"10.1016/j.difgeo.2024.102205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We study left-invariant pseudo-Riemannian metrics on Lie groups using the moving bracket approach of the corresponding Lie algebra. We focus on metrics where the Lie algebra is in the null cone of the <span><math><mi>G</mi><mo>=</mo><mi>O</mi><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-action; i.e., Lie algebras <em>μ</em> where zero is in the closure of the orbits: <span><math><mn>0</mn><mo>∈</mo><mover><mrow><mi>G</mi><mo>⋅</mo><mi>μ</mi></mrow><mo>‾</mo></mover></math></span>. We provide examples of such Lie groups in various signatures and give some general results. For signatures <span><math><mo>(</mo><mn>1</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> and <span><math><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> we classify all cases belonging to the null cone. More generally, we show that all nilpotent and completely solvable Lie algebras are in the null cone of some <span><math><mi>O</mi><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span> action. In addition, several examples of non-trivial Levi-decomposable Lie algebras in the null cone are given.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"97 \",\"pages\":\"Article 102205\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000986\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000986","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用相应李代数的移动括号方法研究李群上的左不变伪黎曼度量。我们的研究重点是李代数在 G=O(p,q) 作用的空锥中的度量,即零值在轨道闭合中的李代数 μ:0∈G⋅μ‾。我们举例说明了不同符号下的此类李群,并给出了一些一般结果。对于符号 (1,q) 和 (2,q),我们对属于空锥的所有情况进行了分类。更一般地说,我们证明了所有零能和完全可解的李代数都在某个 O(p,q) 作用的空锥中。此外,我们还给出了空锥中的几个非三维列维可分解李代数的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Left-invariant pseudo-Riemannian metrics on Lie groups: The null cone
We study left-invariant pseudo-Riemannian metrics on Lie groups using the moving bracket approach of the corresponding Lie algebra. We focus on metrics where the Lie algebra is in the null cone of the G=O(p,q)-action; i.e., Lie algebras μ where zero is in the closure of the orbits: 0Gμ. We provide examples of such Lie groups in various signatures and give some general results. For signatures (1,q) and (2,q) we classify all cases belonging to the null cone. More generally, we show that all nilpotent and completely solvable Lie algebras are in the null cone of some O(p,q) action. In addition, several examples of non-trivial Levi-decomposable Lie algebras in the null cone are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信