{"title":"通过最小和最大曲面表征闵科夫斯基空间中的平行曲面","authors":"José Eduardo Núñez Ortiz, Gabriel Ruiz-Hernández","doi":"10.1016/j.difgeo.2024.102204","DOIUrl":null,"url":null,"abstract":"<div><div>We give a characterization of parallel surfaces in the three dimensional Minkowski space. We consider the following construction on a non degenerate surface <em>M</em>. Given a non degenerate curve in the surface we have the ruled surface orthogonal to <em>M</em> along the curve. We prove that if this orthogonal surface is either maximal or minimal then the curve is a geodesic of <em>M</em>. Moreover such geodesic is either a planar line of curvature of <em>M</em> or it has both constant curvature and constant no zero torsion. A first result says that if <em>M</em> is a surface such that through every point pass two non degenerate geodesics, both with constant curvature and torsion, then the surface is parallel. Our main result says that if <em>M</em> is a surface then through every point pass three non degenerate curves whose associated ruled orthogonal surfaces are either maximal or minimal if and only if <em>M</em> is a parallel surface.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102204"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A characterization of parallel surfaces in Minkowski space via minimal and maximal surfaces\",\"authors\":\"José Eduardo Núñez Ortiz, Gabriel Ruiz-Hernández\",\"doi\":\"10.1016/j.difgeo.2024.102204\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We give a characterization of parallel surfaces in the three dimensional Minkowski space. We consider the following construction on a non degenerate surface <em>M</em>. Given a non degenerate curve in the surface we have the ruled surface orthogonal to <em>M</em> along the curve. We prove that if this orthogonal surface is either maximal or minimal then the curve is a geodesic of <em>M</em>. Moreover such geodesic is either a planar line of curvature of <em>M</em> or it has both constant curvature and constant no zero torsion. A first result says that if <em>M</em> is a surface such that through every point pass two non degenerate geodesics, both with constant curvature and torsion, then the surface is parallel. Our main result says that if <em>M</em> is a surface then through every point pass three non degenerate curves whose associated ruled orthogonal surfaces are either maximal or minimal if and only if <em>M</em> is a parallel surface.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"97 \",\"pages\":\"Article 102204\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000974\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000974","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们给出了三维闵科夫斯基空间中平行曲面的特征。给定曲面中的一条非退化曲线,我们就有了沿该曲线与 M 正交的规则曲面。我们证明,如果这个正交曲面是最大或最小的,那么这条曲线就是 M 的一条大地线。此外,这条大地线要么是 M 的一条平面曲率线,要么具有恒定曲率和恒定无零扭。第一个结果表明,如果 M 是一个曲面,且每一点都经过两条非退化的大地线,且这两条大地线都具有恒定的曲率和扭转,那么这个曲面是平行的。我们的主要结果表明,如果 M 是一个曲面,那么通过每一点的三条非退化曲线,其相关的规则正交曲面要么是最大的,要么是最小的,当且仅当 M 是一个平行曲面。
A characterization of parallel surfaces in Minkowski space via minimal and maximal surfaces
We give a characterization of parallel surfaces in the three dimensional Minkowski space. We consider the following construction on a non degenerate surface M. Given a non degenerate curve in the surface we have the ruled surface orthogonal to M along the curve. We prove that if this orthogonal surface is either maximal or minimal then the curve is a geodesic of M. Moreover such geodesic is either a planar line of curvature of M or it has both constant curvature and constant no zero torsion. A first result says that if M is a surface such that through every point pass two non degenerate geodesics, both with constant curvature and torsion, then the surface is parallel. Our main result says that if M is a surface then through every point pass three non degenerate curves whose associated ruled orthogonal surfaces are either maximal or minimal if and only if M is a parallel surface.
期刊介绍:
Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.