准共形变形产生的平面场的弗罗贝尼斯可整性定理

IF 0.6 4区 数学 Q3 MATHEMATICS
Slobodan N. Simić
{"title":"准共形变形产生的平面场的弗罗贝尼斯可整性定理","authors":"Slobodan N. Simić","doi":"10.1016/j.difgeo.2024.102202","DOIUrl":null,"url":null,"abstract":"<div><div>We generalize the classical Frobenius integrability theorem to plane fields of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>Q</mi></mrow></msup></math></span>, a regularity class introduced by Reimann <span><span>[9]</span></span> for vector fields in Euclidean spaces. Reimann showed that a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>Q</mi></mrow></msup></math></span> vector field is uniquely integrable and its flow is a quasiconformal deformation. We prove that an a.e. involutive <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>Q</mi></mrow></msup></math></span> plane field (defined in a suitable way) in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is integrable, with integral manifolds of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>Q</mi></mrow></msup></math></span>.</div></div>","PeriodicalId":51010,"journal":{"name":"Differential Geometry and its Applications","volume":"97 ","pages":"Article 102202"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Frobenius integrability theorem for plane fields generated by quasiconformal deformations\",\"authors\":\"Slobodan N. Simić\",\"doi\":\"10.1016/j.difgeo.2024.102202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We generalize the classical Frobenius integrability theorem to plane fields of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>Q</mi></mrow></msup></math></span>, a regularity class introduced by Reimann <span><span>[9]</span></span> for vector fields in Euclidean spaces. Reimann showed that a <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>Q</mi></mrow></msup></math></span> vector field is uniquely integrable and its flow is a quasiconformal deformation. We prove that an a.e. involutive <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>Q</mi></mrow></msup></math></span> plane field (defined in a suitable way) in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span> is integrable, with integral manifolds of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>Q</mi></mrow></msup></math></span>.</div></div>\",\"PeriodicalId\":51010,\"journal\":{\"name\":\"Differential Geometry and its Applications\",\"volume\":\"97 \",\"pages\":\"Article 102202\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Differential Geometry and its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0926224524000950\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Geometry and its Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0926224524000950","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们将经典的弗罗贝尼斯可积分性定理推广到 CQ 类平面场,这是 Reimann [9] 为欧几里得空间中的向量场引入的正则性类别。Reimann 证明了 CQ 向量场是唯一可积分的,它的流是类共轭变形。我们证明 Rn 中的非等渐开线 CQ 平面场(以适当方式定义)是可积分的,其积分流形为 C1,Q 类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Frobenius integrability theorem for plane fields generated by quasiconformal deformations
We generalize the classical Frobenius integrability theorem to plane fields of class CQ, a regularity class introduced by Reimann [9] for vector fields in Euclidean spaces. Reimann showed that a CQ vector field is uniquely integrable and its flow is a quasiconformal deformation. We prove that an a.e. involutive CQ plane field (defined in a suitable way) in Rn is integrable, with integral manifolds of class C1,Q.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
20.00%
发文量
81
审稿时长
6-12 weeks
期刊介绍: Differential Geometry and its Applications publishes original research papers and survey papers in differential geometry and in all interdisciplinary areas in mathematics which use differential geometric methods and investigate geometrical structures. The following main areas are covered: differential equations on manifolds, global analysis, Lie groups, local and global differential geometry, the calculus of variations on manifolds, topology of manifolds, and mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信