通过新型多标签对比学习打破标签相关性与实例相似性之间的差距

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xin Wang , Wang Zhang , Yuhong Wu , Xingpeng Zhang , Chao Wang , Huayi Zhan
{"title":"通过新型多标签对比学习打破标签相关性与实例相似性之间的差距","authors":"Xin Wang ,&nbsp;Wang Zhang ,&nbsp;Yuhong Wu ,&nbsp;Xingpeng Zhang ,&nbsp;Chao Wang ,&nbsp;Huayi Zhan","doi":"10.1016/j.neucom.2024.128719","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-label text classification (MLTC) is a fundamental yet challenging task in natural language processing. Existing MLTC models mostly learn text representations and label correlations, separately; while the instance-level correlation, which is crucial for the classification is ignored. To rectify this, we propose a new multi-label contrastive learning model, that captures instance-level correlations, for the MLTC task. Specifically, we first learn label representations by using Graph Convolutional Network (GCN) on label co-occurrence graphs. We next learn text representations by taking label correlations into consideration. Through an attention mechanism, instance-level correlation can be established. To better utilize label correlations, we propose a new contrastive learning model, whose learning is guided by a new learning objective, to further refine label representations. We finally implement a <span><math><mi>k</mi></math></span>-NN mechanism, that identifies <span><math><mi>k</mi></math></span> nearest neighbors of a given text for final prediction. Intensive experimental studies over benchmark multi-label datasets demonstrate the effectiveness of our approach.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"614 ","pages":"Article 128719"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Breaking the gap between label correlation and instance similarity via new multi-label contrastive learning\",\"authors\":\"Xin Wang ,&nbsp;Wang Zhang ,&nbsp;Yuhong Wu ,&nbsp;Xingpeng Zhang ,&nbsp;Chao Wang ,&nbsp;Huayi Zhan\",\"doi\":\"10.1016/j.neucom.2024.128719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multi-label text classification (MLTC) is a fundamental yet challenging task in natural language processing. Existing MLTC models mostly learn text representations and label correlations, separately; while the instance-level correlation, which is crucial for the classification is ignored. To rectify this, we propose a new multi-label contrastive learning model, that captures instance-level correlations, for the MLTC task. Specifically, we first learn label representations by using Graph Convolutional Network (GCN) on label co-occurrence graphs. We next learn text representations by taking label correlations into consideration. Through an attention mechanism, instance-level correlation can be established. To better utilize label correlations, we propose a new contrastive learning model, whose learning is guided by a new learning objective, to further refine label representations. We finally implement a <span><math><mi>k</mi></math></span>-NN mechanism, that identifies <span><math><mi>k</mi></math></span> nearest neighbors of a given text for final prediction. Intensive experimental studies over benchmark multi-label datasets demonstrate the effectiveness of our approach.</div></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":\"614 \",\"pages\":\"Article 128719\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224014905\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224014905","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

多标签文本分类(MLTC)是自然语言处理中一项基本而又具有挑战性的任务。现有的多标签文本分类模型大多分别学习文本表征和标签相关性,而忽略了对分类至关重要的实例级相关性。为了纠正这一问题,我们针对 MLTC 任务提出了一种新的多标签对比学习模型,该模型能捕捉实例级相关性。具体来说,我们首先在标签共现图上使用图卷积网络(GCN)学习标签表示。接下来,我们通过考虑标签相关性来学习文本表征。通过注意机制,可以建立实例级相关性。为了更好地利用标签相关性,我们提出了一种新的对比学习模型,其学习由新的学习目标引导,以进一步完善标签表征。最后,我们实施了一种 k-NN 机制,该机制可识别给定文本的 k 个近邻以进行最终预测。对基准多标签数据集的深入实验研究证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Breaking the gap between label correlation and instance similarity via new multi-label contrastive learning
Multi-label text classification (MLTC) is a fundamental yet challenging task in natural language processing. Existing MLTC models mostly learn text representations and label correlations, separately; while the instance-level correlation, which is crucial for the classification is ignored. To rectify this, we propose a new multi-label contrastive learning model, that captures instance-level correlations, for the MLTC task. Specifically, we first learn label representations by using Graph Convolutional Network (GCN) on label co-occurrence graphs. We next learn text representations by taking label correlations into consideration. Through an attention mechanism, instance-level correlation can be established. To better utilize label correlations, we propose a new contrastive learning model, whose learning is guided by a new learning objective, to further refine label representations. We finally implement a k-NN mechanism, that identifies k nearest neighbors of a given text for final prediction. Intensive experimental studies over benchmark multi-label datasets demonstrate the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信