{"title":"铈含量和轧制工艺对高锌含量 Al-Zn-Ce 合金微观结构和机械性能的影响","authors":"Z.L. Li , C.Y. Liu","doi":"10.1016/j.intermet.2024.108559","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, Al-20 wt%Zn-x wt%Ce alloys (x = 0, 0.1, 0.5, and 1) were fabricated by casting, hot rolling, cold rolling, and solution treatment to investigate the effects of Ce content and rolling route on the microstructure and mechanical properties of high-Zn content Al-Zn-Ce alloys. Ce addition with weight ratio no higher than 0.5 % led to the formation of Al<sub>2</sub>CeZn<sub>2</sub> phases in the Al-20Zn alloy, and the CeZn<sub>3</sub> phases were obtained in this alloy when the Ce content increased to 1 %. Rolling effectively disrupted the Ce-containing phases, and the presence of these phases changed the grain structure of the Al-Zn-Ce alloys by affecting their deformation mode during rolling. Dynamic precipitation of Zn phases occurred in the Al-20Zn alloys during rolling. However, the Ce-containing phase consumed a large amount of Zn atoms, and then inhibited the dynamic precipitation of Zn phases in the studied alloys. The alloys with 0.5 wt%Ce addition exhibited the best mechanical properties, and the strengthening mechanism of the Al-Zn-Ce alloys were studied.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"176 ","pages":"Article 108559"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Ce content and rolling route on the microstructure and mechanical properties of high-Zn content Al-Zn-Ce alloys\",\"authors\":\"Z.L. Li , C.Y. Liu\",\"doi\":\"10.1016/j.intermet.2024.108559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, Al-20 wt%Zn-x wt%Ce alloys (x = 0, 0.1, 0.5, and 1) were fabricated by casting, hot rolling, cold rolling, and solution treatment to investigate the effects of Ce content and rolling route on the microstructure and mechanical properties of high-Zn content Al-Zn-Ce alloys. Ce addition with weight ratio no higher than 0.5 % led to the formation of Al<sub>2</sub>CeZn<sub>2</sub> phases in the Al-20Zn alloy, and the CeZn<sub>3</sub> phases were obtained in this alloy when the Ce content increased to 1 %. Rolling effectively disrupted the Ce-containing phases, and the presence of these phases changed the grain structure of the Al-Zn-Ce alloys by affecting their deformation mode during rolling. Dynamic precipitation of Zn phases occurred in the Al-20Zn alloys during rolling. However, the Ce-containing phase consumed a large amount of Zn atoms, and then inhibited the dynamic precipitation of Zn phases in the studied alloys. The alloys with 0.5 wt%Ce addition exhibited the best mechanical properties, and the strengthening mechanism of the Al-Zn-Ce alloys were studied.</div></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"176 \",\"pages\":\"Article 108559\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979524003789\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524003789","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究通过铸造、热轧、冷轧和固溶处理制造了 Al-20 wt%Zn-x wt%Ce 合金(x = 0、0.1、0.5 和 1),以研究 Ce 含量和轧制路线对高锌含量 Al-Zn-Ce 合金微观结构和力学性能的影响。添加重量比不高于 0.5 % 的 Ce 会在 Al-20Zn 合金中形成 Al2CeZn2 相,当 Ce 含量增加到 1 % 时,合金中会出现 CeZn3 相。轧制有效地破坏了含 Ce 相,这些相的存在通过影响轧制过程中的变形模式改变了 Al-Zn-Ce 合金的晶粒结构。Al-20Zn 合金在轧制过程中发生了锌相的动态沉淀。然而,含 Ce 相消耗了大量 Zn 原子,从而抑制了所研究合金中 Zn 相的动态析出。添加了 0.5 wt%Ce 的合金具有最佳的机械性能,并对 Al-Zn-Ce 合金的强化机理进行了研究。
Effect of Ce content and rolling route on the microstructure and mechanical properties of high-Zn content Al-Zn-Ce alloys
In this study, Al-20 wt%Zn-x wt%Ce alloys (x = 0, 0.1, 0.5, and 1) were fabricated by casting, hot rolling, cold rolling, and solution treatment to investigate the effects of Ce content and rolling route on the microstructure and mechanical properties of high-Zn content Al-Zn-Ce alloys. Ce addition with weight ratio no higher than 0.5 % led to the formation of Al2CeZn2 phases in the Al-20Zn alloy, and the CeZn3 phases were obtained in this alloy when the Ce content increased to 1 %. Rolling effectively disrupted the Ce-containing phases, and the presence of these phases changed the grain structure of the Al-Zn-Ce alloys by affecting their deformation mode during rolling. Dynamic precipitation of Zn phases occurred in the Al-20Zn alloys during rolling. However, the Ce-containing phase consumed a large amount of Zn atoms, and then inhibited the dynamic precipitation of Zn phases in the studied alloys. The alloys with 0.5 wt%Ce addition exhibited the best mechanical properties, and the strengthening mechanism of the Al-Zn-Ce alloys were studied.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.