湍流通道流的时间松弛降阶模型

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Ping-Hsuan Tsai , Paul Fischer , Traian Iliescu
{"title":"湍流通道流的时间松弛降阶模型","authors":"Ping-Hsuan Tsai ,&nbsp;Paul Fischer ,&nbsp;Traian Iliescu","doi":"10.1016/j.jcp.2024.113563","DOIUrl":null,"url":null,"abstract":"<div><div>Regularized reduced order models (Reg-ROMs) are stabilization strategies that leverage spatial filtering to alleviate the spurious numerical oscillations generally displayed by the classical Galerkin ROM (G-ROM) in under-resolved numerical simulations of turbulent flows. In this paper, we propose a new Reg-ROM, the time-relaxation ROM (TR-ROM), which filters the marginally resolved scales. We compare the new TR-ROM with the two other Reg-ROMs in current use, i.e., the Leray ROM (L-ROM) and the evolve-filter-relax ROM (EFR-ROM) and one eddy viscosity model, the mixing-length model, in the numerical simulation of the turbulent channel flow at <span><math><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>=</mo><mn>180</mn></math></span> and <span><math><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>=</mo><mn>395</mn></math></span> in both the reproduction and the predictive regimes. For each Reg-ROM, we investigate two different filters: (i) the differential filter (DF), and (ii) the higher-order algebraic filter (HOAF). In our numerical investigation, we monitor the Reg-ROM performance with respect to the ROM dimension, <em>N</em>, and the filter order. We also perform sensitivity studies of the three Reg-ROMs with respect to the time interval, relaxation parameter, and filter radius. The numerical results yield the following conclusions: (i) All three Reg-ROMs are significantly more accurate than the G-ROM. (ii) All three Reg-ROMs are more accurate than the ROM projection in terms of Reynolds stresses. (iii) With the optimal parameter values, the new TR-ROM yields more accurate results than the L-ROM and the EFR-ROM in all tests. (iv) The new TR-ROM is more accurate than the mixing-length ROM. (v) For most <em>N</em> values, DF yields the most accurate results for all three Reg-ROMs. (vi) The optimal parameters trained in the reproduction regime are also optimal for the predictive regime for most <em>N</em> values, demonstrating the Reg-ROM predictive capabilities. (vii) All three Reg-ROMs are sensitive to the filter order and the filter radius, and the EFR-ROM and the TR-ROM are sensitive to the relaxation parameter. (viii) The optimal range for the filter radius and the effect of relaxation parameter are similar for the two <span><math><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>τ</mi></mrow></msub></math></span> values.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"521 ","pages":"Article 113563"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A time-relaxation reduced order model for the turbulent channel flow\",\"authors\":\"Ping-Hsuan Tsai ,&nbsp;Paul Fischer ,&nbsp;Traian Iliescu\",\"doi\":\"10.1016/j.jcp.2024.113563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Regularized reduced order models (Reg-ROMs) are stabilization strategies that leverage spatial filtering to alleviate the spurious numerical oscillations generally displayed by the classical Galerkin ROM (G-ROM) in under-resolved numerical simulations of turbulent flows. In this paper, we propose a new Reg-ROM, the time-relaxation ROM (TR-ROM), which filters the marginally resolved scales. We compare the new TR-ROM with the two other Reg-ROMs in current use, i.e., the Leray ROM (L-ROM) and the evolve-filter-relax ROM (EFR-ROM) and one eddy viscosity model, the mixing-length model, in the numerical simulation of the turbulent channel flow at <span><math><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>=</mo><mn>180</mn></math></span> and <span><math><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>τ</mi></mrow></msub><mo>=</mo><mn>395</mn></math></span> in both the reproduction and the predictive regimes. For each Reg-ROM, we investigate two different filters: (i) the differential filter (DF), and (ii) the higher-order algebraic filter (HOAF). In our numerical investigation, we monitor the Reg-ROM performance with respect to the ROM dimension, <em>N</em>, and the filter order. We also perform sensitivity studies of the three Reg-ROMs with respect to the time interval, relaxation parameter, and filter radius. The numerical results yield the following conclusions: (i) All three Reg-ROMs are significantly more accurate than the G-ROM. (ii) All three Reg-ROMs are more accurate than the ROM projection in terms of Reynolds stresses. (iii) With the optimal parameter values, the new TR-ROM yields more accurate results than the L-ROM and the EFR-ROM in all tests. (iv) The new TR-ROM is more accurate than the mixing-length ROM. (v) For most <em>N</em> values, DF yields the most accurate results for all three Reg-ROMs. (vi) The optimal parameters trained in the reproduction regime are also optimal for the predictive regime for most <em>N</em> values, demonstrating the Reg-ROM predictive capabilities. (vii) All three Reg-ROMs are sensitive to the filter order and the filter radius, and the EFR-ROM and the TR-ROM are sensitive to the relaxation parameter. (viii) The optimal range for the filter radius and the effect of relaxation parameter are similar for the two <span><math><mi>R</mi><msub><mrow><mi>e</mi></mrow><mrow><mi>τ</mi></mrow></msub></math></span> values.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"521 \",\"pages\":\"Article 113563\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124008118\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008118","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

正则化减阶模型(Regularized reduced order models,ROMs)是一种稳定策略,它利用空间过滤来减轻经典伽勒金 ROM(Galerkin ROM,G-ROM)在湍流欠分辨数值模拟中通常表现出的虚假数值振荡。在本文中,我们提出了一种新的 Reg-ROM,即时间松弛 ROM(TR-ROM),它可以过滤边际分辨尺度。在 Reτ=180 和 Reτ=395 条件下,我们比较了新的 TR-ROM 与目前使用的另外两种 Reg-ROM,即 Leray ROM(L-ROM)、evolve-filter-relax ROM(EFR-ROM),以及一种涡粘模型,即混合长度模型,对湍流通道流进行了再现和预测两方面的数值模拟。对于每种调节模式,我们研究了两种不同的滤波器:(i) 微分滤波器 (DF) 和 (ii) 高阶代数滤波器 (HOAF)。在数值研究中,我们监测了与 ROM 维度 N 和滤波器阶数有关的 Reg-ROM 性能。我们还对三种 Reg-ROM 的时间间隔、松弛参数和滤波器半径进行了敏感性研究。数值结果得出以下结论:(i) 三种 Reg-ROM 的精确度都明显高于 G-ROM。(ii) 就雷诺应力而言,三种 Reg-ROM 都比 ROM 投影更精确。(iii) 在最佳参数值下,新 TR-ROM 在所有测试中都比 L-ROM 和 EFR-ROM 得出更精确的结果。(iv) 新 TR-ROM 比混合长度 ROM 更精确。(v) 在大多数 N 值下,DF 对所有三种 ROM 都能产生最准确的结果。(vi) 就大多数 N 值而言,在重现系统中训练的最佳参数也是预测系统的最佳参数,这证明了 Reg-ROM 的预测能力。(vii) 所有三个 Reg-ROM 都对过滤阶次和过滤半径敏感,EFR-ROM 和 TR-ROM 对松弛参数敏感。(viii) 滤波半径的最佳范围和松弛参数对两个 Reτ 值的影响相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A time-relaxation reduced order model for the turbulent channel flow
Regularized reduced order models (Reg-ROMs) are stabilization strategies that leverage spatial filtering to alleviate the spurious numerical oscillations generally displayed by the classical Galerkin ROM (G-ROM) in under-resolved numerical simulations of turbulent flows. In this paper, we propose a new Reg-ROM, the time-relaxation ROM (TR-ROM), which filters the marginally resolved scales. We compare the new TR-ROM with the two other Reg-ROMs in current use, i.e., the Leray ROM (L-ROM) and the evolve-filter-relax ROM (EFR-ROM) and one eddy viscosity model, the mixing-length model, in the numerical simulation of the turbulent channel flow at Reτ=180 and Reτ=395 in both the reproduction and the predictive regimes. For each Reg-ROM, we investigate two different filters: (i) the differential filter (DF), and (ii) the higher-order algebraic filter (HOAF). In our numerical investigation, we monitor the Reg-ROM performance with respect to the ROM dimension, N, and the filter order. We also perform sensitivity studies of the three Reg-ROMs with respect to the time interval, relaxation parameter, and filter radius. The numerical results yield the following conclusions: (i) All three Reg-ROMs are significantly more accurate than the G-ROM. (ii) All three Reg-ROMs are more accurate than the ROM projection in terms of Reynolds stresses. (iii) With the optimal parameter values, the new TR-ROM yields more accurate results than the L-ROM and the EFR-ROM in all tests. (iv) The new TR-ROM is more accurate than the mixing-length ROM. (v) For most N values, DF yields the most accurate results for all three Reg-ROMs. (vi) The optimal parameters trained in the reproduction regime are also optimal for the predictive regime for most N values, demonstrating the Reg-ROM predictive capabilities. (vii) All three Reg-ROMs are sensitive to the filter order and the filter radius, and the EFR-ROM and the TR-ROM are sensitive to the relaxation parameter. (viii) The optimal range for the filter radius and the effect of relaxation parameter are similar for the two Reτ values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信