遍历混沌常微分方程系统的小样本贝叶斯误差估计

IF 3.8 2区 物理与天体物理 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Cory Frontin, David L. Darmofal
{"title":"遍历混沌常微分方程系统的小样本贝叶斯误差估计","authors":"Cory Frontin,&nbsp;David L. Darmofal","doi":"10.1016/j.jcp.2024.113559","DOIUrl":null,"url":null,"abstract":"<div><div>The discretization of chaotic systems introduces statistical errors in addition to discretization errors into the estimation of quantities of interest. In order to efficiently arrive at estimates of quantities of interest, these two forms of error should be balanced; however, simulations are run without knowledge of the true/asymptotic outputs of interest or their error behaviors. In this work, we develop a framework for error modeling and identification using small-sample Bayesian inference that allows approximation of the optimal balance between sampling time and discretization precision without the computation of high-cost libraries of reference solutions. The result enables the possibility of running chaotic and turbulent simulations in a way that minimizes the total error between sampling and discretization without prior knowledge of the error behavior of the system.</div></div>","PeriodicalId":352,"journal":{"name":"Journal of Computational Physics","volume":"521 ","pages":"Article 113559"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Small-sample Bayesian error estimation for ergodic, chaotic systems of ordinary differential equations\",\"authors\":\"Cory Frontin,&nbsp;David L. Darmofal\",\"doi\":\"10.1016/j.jcp.2024.113559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The discretization of chaotic systems introduces statistical errors in addition to discretization errors into the estimation of quantities of interest. In order to efficiently arrive at estimates of quantities of interest, these two forms of error should be balanced; however, simulations are run without knowledge of the true/asymptotic outputs of interest or their error behaviors. In this work, we develop a framework for error modeling and identification using small-sample Bayesian inference that allows approximation of the optimal balance between sampling time and discretization precision without the computation of high-cost libraries of reference solutions. The result enables the possibility of running chaotic and turbulent simulations in a way that minimizes the total error between sampling and discretization without prior knowledge of the error behavior of the system.</div></div>\",\"PeriodicalId\":352,\"journal\":{\"name\":\"Journal of Computational Physics\",\"volume\":\"521 \",\"pages\":\"Article 113559\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021999124008076\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021999124008076","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

混沌系统的离散化除了会给相关量的估算带来离散化误差外,还会带来统计误差。为了有效得出相关量的估计值,应平衡这两种形式的误差;然而,模拟运行时并不了解相关量的真实/渐近输出或其误差行为。在这项工作中,我们利用小样本贝叶斯推理方法开发了一个误差建模和识别框架,可以近似实现采样时间和离散化精度之间的最佳平衡,而无需计算高成本的参考解库。这样就可以在不事先了解系统误差行为的情况下,以最小化采样和离散化之间总误差的方式运行混沌和湍流模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Small-sample Bayesian error estimation for ergodic, chaotic systems of ordinary differential equations
The discretization of chaotic systems introduces statistical errors in addition to discretization errors into the estimation of quantities of interest. In order to efficiently arrive at estimates of quantities of interest, these two forms of error should be balanced; however, simulations are run without knowledge of the true/asymptotic outputs of interest or their error behaviors. In this work, we develop a framework for error modeling and identification using small-sample Bayesian inference that allows approximation of the optimal balance between sampling time and discretization precision without the computation of high-cost libraries of reference solutions. The result enables the possibility of running chaotic and turbulent simulations in a way that minimizes the total error between sampling and discretization without prior knowledge of the error behavior of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Computational Physics
Journal of Computational Physics 物理-计算机:跨学科应用
CiteScore
7.60
自引率
14.60%
发文量
763
审稿时长
5.8 months
期刊介绍: Journal of Computational Physics thoroughly treats the computational aspects of physical problems, presenting techniques for the numerical solution of mathematical equations arising in all areas of physics. The journal seeks to emphasize methods that cross disciplinary boundaries. The Journal of Computational Physics also publishes short notes of 4 pages or less (including figures, tables, and references but excluding title pages). Letters to the Editor commenting on articles already published in this Journal will also be considered. Neither notes nor letters should have an abstract.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信