Liming Fu , Zhian Song , Qigui Yang , Te Zhu , Rui Ma , Mingpan Wan , Peng Zhang , Runsheng Yu , Xingzhong Cao
{"title":"CoCrFeNi 基高熵合金在老化温度过程中的显微结构演变和拉伸性能行为","authors":"Liming Fu , Zhian Song , Qigui Yang , Te Zhu , Rui Ma , Mingpan Wan , Peng Zhang , Runsheng Yu , Xingzhong Cao","doi":"10.1016/j.intermet.2024.108560","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the strengthening mechanism of high entropy alloys (HEA) is vital to improve their mechanical properties. In this study, we thoroughly investigated the strengthening effect of L1<sub>2</sub> nanoprecipitates on the mechanical properties of the face-centered cubic (FCC) CoCrFeNi HEA. The L1<sub>2</sub> nanoprecipitates were introduced by adding titanium (Ti), niobium (Nb), and aluminum (Al). Following a series of heat treatments (aged at 400 °C, 600 °C, and 800 °C for 4 h), the samples aged at 800 °C exhibited a noticeable improvement in tensile strength compared to the CoCrFeNi-based alloy, while maintaining excellent ductility (elongation greater than 29 %). This enhanced in performance is primarily attributed to the synergistic effects of multiple strengthening mechanisms, with precipitation strengthening playing a particularly prominent role (<span><math><mrow><mrow><mo>Δ</mo><msub><mi>σ</mi><mi>P</mi></msub><mo>=</mo><mn>385.6</mn><mi>M</mi><mi>P</mi><mi>a</mi></mrow><mo>)</mo></mrow></math></span>. Transmission electron microscopy (TEM) results revealed that the volume fraction of L1<sub>2</sub> precipitates reached 35 %, with sizes around 12 nm. This study provides valuable theoretical insights for optimizing the composition and processing strategies of high entropy alloys and lays a solid foundation for the development of high-performance alloys suited to complex engineering applications.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"176 ","pages":"Article 108560"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure evolution and tensile properties behavior during aging temperature of CoCrFeNi-based high entropy alloys\",\"authors\":\"Liming Fu , Zhian Song , Qigui Yang , Te Zhu , Rui Ma , Mingpan Wan , Peng Zhang , Runsheng Yu , Xingzhong Cao\",\"doi\":\"10.1016/j.intermet.2024.108560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the strengthening mechanism of high entropy alloys (HEA) is vital to improve their mechanical properties. In this study, we thoroughly investigated the strengthening effect of L1<sub>2</sub> nanoprecipitates on the mechanical properties of the face-centered cubic (FCC) CoCrFeNi HEA. The L1<sub>2</sub> nanoprecipitates were introduced by adding titanium (Ti), niobium (Nb), and aluminum (Al). Following a series of heat treatments (aged at 400 °C, 600 °C, and 800 °C for 4 h), the samples aged at 800 °C exhibited a noticeable improvement in tensile strength compared to the CoCrFeNi-based alloy, while maintaining excellent ductility (elongation greater than 29 %). This enhanced in performance is primarily attributed to the synergistic effects of multiple strengthening mechanisms, with precipitation strengthening playing a particularly prominent role (<span><math><mrow><mrow><mo>Δ</mo><msub><mi>σ</mi><mi>P</mi></msub><mo>=</mo><mn>385.6</mn><mi>M</mi><mi>P</mi><mi>a</mi></mrow><mo>)</mo></mrow></math></span>. Transmission electron microscopy (TEM) results revealed that the volume fraction of L1<sub>2</sub> precipitates reached 35 %, with sizes around 12 nm. This study provides valuable theoretical insights for optimizing the composition and processing strategies of high entropy alloys and lays a solid foundation for the development of high-performance alloys suited to complex engineering applications.</div></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"176 \",\"pages\":\"Article 108560\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979524003790\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524003790","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Microstructure evolution and tensile properties behavior during aging temperature of CoCrFeNi-based high entropy alloys
Understanding the strengthening mechanism of high entropy alloys (HEA) is vital to improve their mechanical properties. In this study, we thoroughly investigated the strengthening effect of L12 nanoprecipitates on the mechanical properties of the face-centered cubic (FCC) CoCrFeNi HEA. The L12 nanoprecipitates were introduced by adding titanium (Ti), niobium (Nb), and aluminum (Al). Following a series of heat treatments (aged at 400 °C, 600 °C, and 800 °C for 4 h), the samples aged at 800 °C exhibited a noticeable improvement in tensile strength compared to the CoCrFeNi-based alloy, while maintaining excellent ductility (elongation greater than 29 %). This enhanced in performance is primarily attributed to the synergistic effects of multiple strengthening mechanisms, with precipitation strengthening playing a particularly prominent role (. Transmission electron microscopy (TEM) results revealed that the volume fraction of L12 precipitates reached 35 %, with sizes around 12 nm. This study provides valuable theoretical insights for optimizing the composition and processing strategies of high entropy alloys and lays a solid foundation for the development of high-performance alloys suited to complex engineering applications.
期刊介绍:
This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys.
The journal reports the science and engineering of metallic materials in the following aspects:
Theories and experiments which address the relationship between property and structure in all length scales.
Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations.
Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties.
Technological applications resulting from the understanding of property-structure relationship in materials.
Novel and cutting-edge results warranting rapid communication.
The journal also publishes special issues on selected topics and overviews by invitation only.