{"title":"从废弃生物质中获得碳点的宽光致发光斯托克斯位移","authors":"Masoud Al-Rasheidi , Arwa Alabdulhadi , Firoz Khan","doi":"10.1016/j.molstruc.2024.140627","DOIUrl":null,"url":null,"abstract":"<div><div>Owing to the tremendous physicochemical and quantum confinement characteristics of carbon quantum dots (CQDs), they have revealed exciting and essential visions in the field of energy conversion and energy storage. However, due to their low photoluminescence quantum yield (PLQY) and/or short Stokes-shift, limits their application in photovoltaic (PV). In this regard, a novel and cost-effective method was used to synthesize the CQDs using waste biomass. Furthermore, a comprehensive study was made to explore the applicability of the CQDs as photon downconverters/downshifters in PVs. The average size of the CQDs are 5.1, 4.4, and 3.9 nm for the synthesis temperature of 160, 180, and 200 ℃, respectively. The EDS analysis revealed that C, O, Mg, Na, Cl, and K are present in all the CQDs. The PL emission peak position is blue-shifted with the rise in the synthesis temperature. The Stokes-shift is reduced with a rise in the synthesis temperature. The highest Stokes-shift was obtained at excitation wavelength of 300 nm for CQDs synthesized at 160 ℃. The PLQY increased by 3.5 and 7.2-folds for the rise in the temperature from 160 to 180 and 200 ℃, respectively. The investigation revealed that the applicability of CQDs can be enriched via the selection of the synthesis parameters.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1322 ","pages":"Article 140627"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attaining a wide photoluminescence Stokes-shift of carbon dots obtained from waste biomass\",\"authors\":\"Masoud Al-Rasheidi , Arwa Alabdulhadi , Firoz Khan\",\"doi\":\"10.1016/j.molstruc.2024.140627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Owing to the tremendous physicochemical and quantum confinement characteristics of carbon quantum dots (CQDs), they have revealed exciting and essential visions in the field of energy conversion and energy storage. However, due to their low photoluminescence quantum yield (PLQY) and/or short Stokes-shift, limits their application in photovoltaic (PV). In this regard, a novel and cost-effective method was used to synthesize the CQDs using waste biomass. Furthermore, a comprehensive study was made to explore the applicability of the CQDs as photon downconverters/downshifters in PVs. The average size of the CQDs are 5.1, 4.4, and 3.9 nm for the synthesis temperature of 160, 180, and 200 ℃, respectively. The EDS analysis revealed that C, O, Mg, Na, Cl, and K are present in all the CQDs. The PL emission peak position is blue-shifted with the rise in the synthesis temperature. The Stokes-shift is reduced with a rise in the synthesis temperature. The highest Stokes-shift was obtained at excitation wavelength of 300 nm for CQDs synthesized at 160 ℃. The PLQY increased by 3.5 and 7.2-folds for the rise in the temperature from 160 to 180 and 200 ℃, respectively. The investigation revealed that the applicability of CQDs can be enriched via the selection of the synthesis parameters.</div></div>\",\"PeriodicalId\":16414,\"journal\":{\"name\":\"Journal of Molecular Structure\",\"volume\":\"1322 \",\"pages\":\"Article 140627\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Structure\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022286024031351\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024031351","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Attaining a wide photoluminescence Stokes-shift of carbon dots obtained from waste biomass
Owing to the tremendous physicochemical and quantum confinement characteristics of carbon quantum dots (CQDs), they have revealed exciting and essential visions in the field of energy conversion and energy storage. However, due to their low photoluminescence quantum yield (PLQY) and/or short Stokes-shift, limits their application in photovoltaic (PV). In this regard, a novel and cost-effective method was used to synthesize the CQDs using waste biomass. Furthermore, a comprehensive study was made to explore the applicability of the CQDs as photon downconverters/downshifters in PVs. The average size of the CQDs are 5.1, 4.4, and 3.9 nm for the synthesis temperature of 160, 180, and 200 ℃, respectively. The EDS analysis revealed that C, O, Mg, Na, Cl, and K are present in all the CQDs. The PL emission peak position is blue-shifted with the rise in the synthesis temperature. The Stokes-shift is reduced with a rise in the synthesis temperature. The highest Stokes-shift was obtained at excitation wavelength of 300 nm for CQDs synthesized at 160 ℃. The PLQY increased by 3.5 and 7.2-folds for the rise in the temperature from 160 to 180 and 200 ℃, respectively. The investigation revealed that the applicability of CQDs can be enriched via the selection of the synthesis parameters.
期刊介绍:
The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including:
• Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.)
• Chemical intermediates
• Molecules in excited states
• Biological molecules
• Polymers.
The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example:
• Infrared spectroscopy (mid, far, near)
• Raman spectroscopy and non-linear Raman methods (CARS, etc.)
• Electronic absorption spectroscopy
• Optical rotatory dispersion and circular dichroism
• Fluorescence and phosphorescence techniques
• Electron spectroscopies (PES, XPS), EXAFS, etc.
• Microwave spectroscopy
• Electron diffraction
• NMR and ESR spectroscopies
• Mössbauer spectroscopy
• X-ray crystallography
• Charge Density Analyses
• Computational Studies (supplementing experimental methods)
We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.