D. Martínez , P.A. Orellana , L. Rosales , J. Dolado , M. Amado , E. Diez , F. Domínguez-Adame , R.P.A. Lima
{"title":"揭示 InSb 纳米线网络中的连续束缚态","authors":"D. Martínez , P.A. Orellana , L. Rosales , J. Dolado , M. Amado , E. Diez , F. Domínguez-Adame , R.P.A. Lima","doi":"10.1016/j.physe.2024.116145","DOIUrl":null,"url":null,"abstract":"<div><div>Bound states in the continuum (BICs) are exotic, localized states even though their energy lies in the continuum spectra. Since its discovery in 1929, the quest to unveil these exotic states in charge transport experiments remains an active pursuit in condensed matter physics. Here, we study charge transport in InSb nanowire networks in the ballistic regime and subject to a perpendicular magnetic field as ideal candidates to observe and control the appearance of BICs. We find that BICs reveal themselves as distinctive resonances or antiresonances in the conductance by varying the applied magnetic field and the Fermi energy. We systematically consider different lead connections in hashtag-like nanowire networks, finding the optimal configuration that enhances the features associated with the emergence of BICs. Finally, the investigation focuses on the effect of the Rashba spin–orbit interaction of InSb on the occurrence of BICs in nanowire networks. While the interaction generally plays a detrimental role in the signatures of the BICs in the conductance of the nanowire networks, it opens the possibility to operate these nanostructures as spin filters for spintronics. We believe that this work could pave the way for the unambiguous observation of BICs in charge transport experiments and for the development of advanced spintronic devices.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"166 ","pages":"Article 116145"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncovering bound states in the continuum in InSb nanowire networks\",\"authors\":\"D. Martínez , P.A. Orellana , L. Rosales , J. Dolado , M. Amado , E. Diez , F. Domínguez-Adame , R.P.A. Lima\",\"doi\":\"10.1016/j.physe.2024.116145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Bound states in the continuum (BICs) are exotic, localized states even though their energy lies in the continuum spectra. Since its discovery in 1929, the quest to unveil these exotic states in charge transport experiments remains an active pursuit in condensed matter physics. Here, we study charge transport in InSb nanowire networks in the ballistic regime and subject to a perpendicular magnetic field as ideal candidates to observe and control the appearance of BICs. We find that BICs reveal themselves as distinctive resonances or antiresonances in the conductance by varying the applied magnetic field and the Fermi energy. We systematically consider different lead connections in hashtag-like nanowire networks, finding the optimal configuration that enhances the features associated with the emergence of BICs. Finally, the investigation focuses on the effect of the Rashba spin–orbit interaction of InSb on the occurrence of BICs in nanowire networks. While the interaction generally plays a detrimental role in the signatures of the BICs in the conductance of the nanowire networks, it opens the possibility to operate these nanostructures as spin filters for spintronics. We believe that this work could pave the way for the unambiguous observation of BICs in charge transport experiments and for the development of advanced spintronic devices.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"166 \",\"pages\":\"Article 116145\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947724002492\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724002492","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Uncovering bound states in the continuum in InSb nanowire networks
Bound states in the continuum (BICs) are exotic, localized states even though their energy lies in the continuum spectra. Since its discovery in 1929, the quest to unveil these exotic states in charge transport experiments remains an active pursuit in condensed matter physics. Here, we study charge transport in InSb nanowire networks in the ballistic regime and subject to a perpendicular magnetic field as ideal candidates to observe and control the appearance of BICs. We find that BICs reveal themselves as distinctive resonances or antiresonances in the conductance by varying the applied magnetic field and the Fermi energy. We systematically consider different lead connections in hashtag-like nanowire networks, finding the optimal configuration that enhances the features associated with the emergence of BICs. Finally, the investigation focuses on the effect of the Rashba spin–orbit interaction of InSb on the occurrence of BICs in nanowire networks. While the interaction generally plays a detrimental role in the signatures of the BICs in the conductance of the nanowire networks, it opens the possibility to operate these nanostructures as spin filters for spintronics. We believe that this work could pave the way for the unambiguous observation of BICs in charge transport experiments and for the development of advanced spintronic devices.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures