{"title":"氟化碳纳米管-绝缘体-金属二极管:第一原理计算预测","authors":"G.R. Berdiyorov","doi":"10.1016/j.physe.2024.116133","DOIUrl":null,"url":null,"abstract":"<div><div>Using quantum transport calculations with the Atomistix Toolkit, we propose carbon nanotube (CNT)-based diode structures featuring enhanced diode properties. The idea is to use a CNT with a fluorinated tip, which is separated from the metallic electrode by an insulating (ZnO) layer. This system shows better operational properties in terms of both current magnitude and current rectification compared to diode structures consisting of non-fluorinated CNTs. The enhanced current rectification is related to the formation of additional voltage-polarity-dependent transmission channels. The proposed system can be used to create CNT-based rectenna devices with enhanced solar conversion efficiency.</div></div>","PeriodicalId":20181,"journal":{"name":"Physica E-low-dimensional Systems & Nanostructures","volume":"166 ","pages":"Article 116133"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluorinated carbon nanotube-insulator–metal diodes: Predictions from first-principles calculations\",\"authors\":\"G.R. Berdiyorov\",\"doi\":\"10.1016/j.physe.2024.116133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using quantum transport calculations with the Atomistix Toolkit, we propose carbon nanotube (CNT)-based diode structures featuring enhanced diode properties. The idea is to use a CNT with a fluorinated tip, which is separated from the metallic electrode by an insulating (ZnO) layer. This system shows better operational properties in terms of both current magnitude and current rectification compared to diode structures consisting of non-fluorinated CNTs. The enhanced current rectification is related to the formation of additional voltage-polarity-dependent transmission channels. The proposed system can be used to create CNT-based rectenna devices with enhanced solar conversion efficiency.</div></div>\",\"PeriodicalId\":20181,\"journal\":{\"name\":\"Physica E-low-dimensional Systems & Nanostructures\",\"volume\":\"166 \",\"pages\":\"Article 116133\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica E-low-dimensional Systems & Nanostructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1386947724002376\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica E-low-dimensional Systems & Nanostructures","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1386947724002376","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Fluorinated carbon nanotube-insulator–metal diodes: Predictions from first-principles calculations
Using quantum transport calculations with the Atomistix Toolkit, we propose carbon nanotube (CNT)-based diode structures featuring enhanced diode properties. The idea is to use a CNT with a fluorinated tip, which is separated from the metallic electrode by an insulating (ZnO) layer. This system shows better operational properties in terms of both current magnitude and current rectification compared to diode structures consisting of non-fluorinated CNTs. The enhanced current rectification is related to the formation of additional voltage-polarity-dependent transmission channels. The proposed system can be used to create CNT-based rectenna devices with enhanced solar conversion efficiency.
期刊介绍:
Physica E: Low-dimensional systems and nanostructures contains papers and invited review articles on the fundamental and applied aspects of physics in low-dimensional electron systems, in semiconductor heterostructures, oxide interfaces, quantum wells and superlattices, quantum wires and dots, novel quantum states of matter such as topological insulators, and Weyl semimetals.
Both theoretical and experimental contributions are invited. Topics suitable for publication in this journal include spin related phenomena, optical and transport properties, many-body effects, integer and fractional quantum Hall effects, quantum spin Hall effect, single electron effects and devices, Majorana fermions, and other novel phenomena.
Keywords:
• topological insulators/superconductors, majorana fermions, Wyel semimetals;
• quantum and neuromorphic computing/quantum information physics and devices based on low dimensional systems;
• layered superconductivity, low dimensional systems with superconducting proximity effect;
• 2D materials such as transition metal dichalcogenides;
• oxide heterostructures including ZnO, SrTiO3 etc;
• carbon nanostructures (graphene, carbon nanotubes, diamond NV center, etc.)
• quantum wells and superlattices;
• quantum Hall effect, quantum spin Hall effect, quantum anomalous Hall effect;
• optical- and phonons-related phenomena;
• magnetic-semiconductor structures;
• charge/spin-, magnon-, skyrmion-, Cooper pair- and majorana fermion- transport and tunneling;
• ultra-fast nonlinear optical phenomena;
• novel devices and applications (such as high performance sensor, solar cell, etc);
• novel growth and fabrication techniques for nanostructures