{"title":"SL˜(2,R) 共轭类的分类","authors":"Christian Táfula","doi":"10.1016/j.exmath.2024.125626","DOIUrl":null,"url":null,"abstract":"<div><div>In this note, we classify the conjugacy classes of <span><math><mrow><msub><mrow><mover><mrow><mi>SL</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, the universal covering group of <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>. For any non-central element <span><math><mrow><mi>α</mi><mo>∈</mo><msub><mrow><mover><mrow><mi>SL</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, we show that its conjugacy class may be determined by three invariants: (i) <em>Trace</em>: the trace (valued in the set of positive real numbers <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>) of its image <span><math><mover><mrow><mi>α</mi></mrow><mo>¯</mo></mover></math></span> in <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>; (ii) <em>Direction type</em>: the sign behavior of the induced self-homeomorphism of <span><math><mi>R</mi></math></span> determined by the lifting <span><math><mrow><msub><mrow><mover><mrow><mi>SL</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>↷</mo><mi>R</mi></mrow></math></span> of the action <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>↷</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></math></span>; (iii) <em>The function</em> <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>♯</mi></mrow></msup></math></span>: a conjugacy invariant length function introduced by Mochizuki (2016).</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"42 6","pages":"Article 125626"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of the conjugacy classes of SL˜(2,R)\",\"authors\":\"Christian Táfula\",\"doi\":\"10.1016/j.exmath.2024.125626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this note, we classify the conjugacy classes of <span><math><mrow><msub><mrow><mover><mrow><mi>SL</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, the universal covering group of <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>. For any non-central element <span><math><mrow><mi>α</mi><mo>∈</mo><msub><mrow><mover><mrow><mi>SL</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, we show that its conjugacy class may be determined by three invariants: (i) <em>Trace</em>: the trace (valued in the set of positive real numbers <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>) of its image <span><math><mover><mrow><mi>α</mi></mrow><mo>¯</mo></mover></math></span> in <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>; (ii) <em>Direction type</em>: the sign behavior of the induced self-homeomorphism of <span><math><mi>R</mi></math></span> determined by the lifting <span><math><mrow><msub><mrow><mover><mrow><mi>SL</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>↷</mo><mi>R</mi></mrow></math></span> of the action <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>↷</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></math></span>; (iii) <em>The function</em> <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>♯</mi></mrow></msup></math></span>: a conjugacy invariant length function introduced by Mochizuki (2016).</div></div>\",\"PeriodicalId\":50458,\"journal\":{\"name\":\"Expositiones Mathematicae\",\"volume\":\"42 6\",\"pages\":\"Article 125626\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expositiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723086924000938\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086924000938","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Classification of the conjugacy classes of SL˜(2,R)
In this note, we classify the conjugacy classes of , the universal covering group of . For any non-central element , we show that its conjugacy class may be determined by three invariants: (i) Trace: the trace (valued in the set of positive real numbers ) of its image in ; (ii) Direction type: the sign behavior of the induced self-homeomorphism of determined by the lifting of the action ; (iii) The function : a conjugacy invariant length function introduced by Mochizuki (2016).
期刊介绍:
Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.