SL˜(2,R) 共轭类的分类

IF 0.8 4区 数学 Q2 MATHEMATICS
Christian Táfula
{"title":"SL˜(2,R) 共轭类的分类","authors":"Christian Táfula","doi":"10.1016/j.exmath.2024.125626","DOIUrl":null,"url":null,"abstract":"<div><div>In this note, we classify the conjugacy classes of <span><math><mrow><msub><mrow><mover><mrow><mi>SL</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, the universal covering group of <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>. For any non-central element <span><math><mrow><mi>α</mi><mo>∈</mo><msub><mrow><mover><mrow><mi>SL</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, we show that its conjugacy class may be determined by three invariants: (i) <em>Trace</em>: the trace (valued in the set of positive real numbers <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>) of its image <span><math><mover><mrow><mi>α</mi></mrow><mo>¯</mo></mover></math></span> in <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>; (ii) <em>Direction type</em>: the sign behavior of the induced self-homeomorphism of <span><math><mi>R</mi></math></span> determined by the lifting <span><math><mrow><msub><mrow><mover><mrow><mi>SL</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>↷</mo><mi>R</mi></mrow></math></span> of the action <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>↷</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></math></span>; (iii) <em>The function</em> <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>♯</mi></mrow></msup></math></span>: a conjugacy invariant length function introduced by Mochizuki (2016).</div></div>","PeriodicalId":50458,"journal":{"name":"Expositiones Mathematicae","volume":"42 6","pages":"Article 125626"},"PeriodicalIF":0.8000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of the conjugacy classes of SL˜(2,R)\",\"authors\":\"Christian Táfula\",\"doi\":\"10.1016/j.exmath.2024.125626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this note, we classify the conjugacy classes of <span><math><mrow><msub><mrow><mover><mrow><mi>SL</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, the universal covering group of <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>. For any non-central element <span><math><mrow><mi>α</mi><mo>∈</mo><msub><mrow><mover><mrow><mi>SL</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>, we show that its conjugacy class may be determined by three invariants: (i) <em>Trace</em>: the trace (valued in the set of positive real numbers <span><math><msub><mrow><mi>R</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>) of its image <span><math><mover><mrow><mi>α</mi></mrow><mo>¯</mo></mover></math></span> in <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow></mrow></math></span>; (ii) <em>Direction type</em>: the sign behavior of the induced self-homeomorphism of <span><math><mi>R</mi></math></span> determined by the lifting <span><math><mrow><msub><mrow><mover><mrow><mi>SL</mi></mrow><mrow><mo>˜</mo></mrow></mover></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>↷</mo><mi>R</mi></mrow></math></span> of the action <span><math><mrow><msub><mrow><mi>PSL</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>R</mi><mo>)</mo></mrow><mo>↷</mo><msup><mrow><mi>S</mi></mrow><mrow><mn>1</mn></mrow></msup></mrow></math></span>; (iii) <em>The function</em> <span><math><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>♯</mi></mrow></msup></math></span>: a conjugacy invariant length function introduced by Mochizuki (2016).</div></div>\",\"PeriodicalId\":50458,\"journal\":{\"name\":\"Expositiones Mathematicae\",\"volume\":\"42 6\",\"pages\":\"Article 125626\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Expositiones Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0723086924000938\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expositiones Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0723086924000938","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本论文中,我们对 PSL2(R) 的普遍覆盖组 SL˜2(R)的共轭类进行了分类。对于任何非中心元 α∈SL˜2(R),我们证明它的共轭类可以由三个不变式决定:(i) 迹:它在 PSL2(R) 中的像α¯ 的迹(在正实数集 R+ 中取值);(ii) 方向类型:由作用 PSL2(R)↷S1 的提升 SL˜2(R)↷R 决定的 R 的诱导自同构的符号行为;(ii) 函数 ℓ♯:由 Mochizuki (2016) 引入的共轭不变长度函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Classification of the conjugacy classes of SL˜(2,R)
In this note, we classify the conjugacy classes of SL˜2(R), the universal covering group of PSL2(R). For any non-central element αSL˜2(R), we show that its conjugacy class may be determined by three invariants: (i) Trace: the trace (valued in the set of positive real numbers R+) of its image α¯ in PSL2(R); (ii) Direction type: the sign behavior of the induced self-homeomorphism of R determined by the lifting SL˜2(R)R of the action PSL2(R)S1; (iii) The function : a conjugacy invariant length function introduced by Mochizuki (2016).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
41
审稿时长
40 days
期刊介绍: Our aim is to publish papers of interest to a wide mathematical audience. Our main interest is in expository articles that make high-level research results more widely accessible. In general, material submitted should be at least at the graduate level.Main articles must be written in such a way that a graduate-level research student interested in the topic of the paper can read them profitably. When the topic is quite specialized, or the main focus is a narrow research result, the paper is probably not appropriate for this journal. Most original research articles are not suitable for this journal, unless they have particularly broad appeal.Mathematical notes can be more focused than main articles. These should not simply be short research articles, but should address a mathematical question with reasonably broad appeal. Elementary solutions of elementary problems are typically not appropriate. Neither are overly technical papers, which should best be submitted to a specialized research journal.Clarity of exposition, accuracy of details and the relevance and interest of the subject matter will be the decisive factors in our acceptance of an article for publication. Submitted papers are subject to a quick overview before entering into a more detailed review process. All published papers have been refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信