{"title":"用于超级电容器剩余使用寿命预测的并行 GhostNet 分类预测方法","authors":"Quan Lu, Wenju Ju, Linfei Yin","doi":"10.1016/j.aei.2024.102916","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate and rapid prediction of supercapacitors’ remaining useful life (RUL) and timely replacement of failing supercapacitors are of great importance to systemic stability and safety. To decrease the effects of the manual extraction of aging characteristics and fluctuations in the capacity data of supercapacitors for supercapacitor RUL prediction, a parallel GhostNet classification prediction method for supercapacitor RUL prediction is proposed. In this study, the mapping relationship between supercapacitor charging/discharging capacity data and RUL is established directly. In addition, the aging characteristics are learned from the raw observation data without relevant reserve knowledge. The supercapacitor RUL is quantified into 30 rank intervals and predicted by the parallel GhostNet classification method. The validation results based on 60 supercapacitors indicate that the prediction precision of the parallel GhostNet for supercapacitor RUL is 81.84 %, 21.28 % higher than that of a single GhostNet, 19.86 % higher than that of the Xeption model with the highest accuracy among other classical networks. Furthermore, introducing depth separable convolution, the prediction speed of the proposed parallel GhostNet model is 50576 s faster than that of the Xeption model.</div></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":"62 ","pages":"Article 102916"},"PeriodicalIF":8.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel GhostNet classification prediction method for supercapacitor remaining useful life prediction\",\"authors\":\"Quan Lu, Wenju Ju, Linfei Yin\",\"doi\":\"10.1016/j.aei.2024.102916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate and rapid prediction of supercapacitors’ remaining useful life (RUL) and timely replacement of failing supercapacitors are of great importance to systemic stability and safety. To decrease the effects of the manual extraction of aging characteristics and fluctuations in the capacity data of supercapacitors for supercapacitor RUL prediction, a parallel GhostNet classification prediction method for supercapacitor RUL prediction is proposed. In this study, the mapping relationship between supercapacitor charging/discharging capacity data and RUL is established directly. In addition, the aging characteristics are learned from the raw observation data without relevant reserve knowledge. The supercapacitor RUL is quantified into 30 rank intervals and predicted by the parallel GhostNet classification method. The validation results based on 60 supercapacitors indicate that the prediction precision of the parallel GhostNet for supercapacitor RUL is 81.84 %, 21.28 % higher than that of a single GhostNet, 19.86 % higher than that of the Xeption model with the highest accuracy among other classical networks. Furthermore, introducing depth separable convolution, the prediction speed of the proposed parallel GhostNet model is 50576 s faster than that of the Xeption model.</div></div>\",\"PeriodicalId\":50941,\"journal\":{\"name\":\"Advanced Engineering Informatics\",\"volume\":\"62 \",\"pages\":\"Article 102916\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1474034624005676\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1474034624005676","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Parallel GhostNet classification prediction method for supercapacitor remaining useful life prediction
Accurate and rapid prediction of supercapacitors’ remaining useful life (RUL) and timely replacement of failing supercapacitors are of great importance to systemic stability and safety. To decrease the effects of the manual extraction of aging characteristics and fluctuations in the capacity data of supercapacitors for supercapacitor RUL prediction, a parallel GhostNet classification prediction method for supercapacitor RUL prediction is proposed. In this study, the mapping relationship between supercapacitor charging/discharging capacity data and RUL is established directly. In addition, the aging characteristics are learned from the raw observation data without relevant reserve knowledge. The supercapacitor RUL is quantified into 30 rank intervals and predicted by the parallel GhostNet classification method. The validation results based on 60 supercapacitors indicate that the prediction precision of the parallel GhostNet for supercapacitor RUL is 81.84 %, 21.28 % higher than that of a single GhostNet, 19.86 % higher than that of the Xeption model with the highest accuracy among other classical networks. Furthermore, introducing depth separable convolution, the prediction speed of the proposed parallel GhostNet model is 50576 s faster than that of the Xeption model.
期刊介绍:
Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.