Koen Vellenga , H. Joe Steinhauer , Alexander Karlsson , Göran Falkman , Asli Rhodin , Ashok Koppisetty
{"title":"设计用于识别驾驶员意图的深度神经网络","authors":"Koen Vellenga , H. Joe Steinhauer , Alexander Karlsson , Göran Falkman , Asli Rhodin , Ashok Koppisetty","doi":"10.1016/j.engappai.2024.109574","DOIUrl":null,"url":null,"abstract":"<div><div>Driver intention recognition (DIR) studies increasingly rely on deep neural networks. Deep neural networks have achieved top performance for many different tasks. However, apart from image classifications and semantic segmentation for mobile phones, it is not a common practice for components of advanced driver assistance systems to explicitly analyze the complexity and performance of the network’s architecture. Therefore, this paper applies neural architecture search to investigate the effects of the deep neural network architecture on a real-world safety critical application with limited computational capabilities. We explore a pre-defined search space for three deep neural network layer types that are capable to handle sequential data (a long-short term memory, temporal convolution, and a time-series transformer layer), and the influence of different data fusion strategies on the driver intention recognition performance. A set of eight search strategies are evaluated for two driver intention recognition datasets. For the two datasets, we observed that there is no search strategy clearly sampling better deep neural network architectures. However, performing an architecture search improves the model performance compared to the original manually designed networks. Furthermore, we observe no relation between increased model complexity and better driver intention recognition performance. The result indicate that multiple architectures can yield similar performance, regardless of the deep neural network layer type or fusion strategy. However, the optimal complexity, layer type and fusion remain unknown upfront.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109574"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing deep neural networks for driver intention recognition\",\"authors\":\"Koen Vellenga , H. Joe Steinhauer , Alexander Karlsson , Göran Falkman , Asli Rhodin , Ashok Koppisetty\",\"doi\":\"10.1016/j.engappai.2024.109574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Driver intention recognition (DIR) studies increasingly rely on deep neural networks. Deep neural networks have achieved top performance for many different tasks. However, apart from image classifications and semantic segmentation for mobile phones, it is not a common practice for components of advanced driver assistance systems to explicitly analyze the complexity and performance of the network’s architecture. Therefore, this paper applies neural architecture search to investigate the effects of the deep neural network architecture on a real-world safety critical application with limited computational capabilities. We explore a pre-defined search space for three deep neural network layer types that are capable to handle sequential data (a long-short term memory, temporal convolution, and a time-series transformer layer), and the influence of different data fusion strategies on the driver intention recognition performance. A set of eight search strategies are evaluated for two driver intention recognition datasets. For the two datasets, we observed that there is no search strategy clearly sampling better deep neural network architectures. However, performing an architecture search improves the model performance compared to the original manually designed networks. Furthermore, we observe no relation between increased model complexity and better driver intention recognition performance. The result indicate that multiple architectures can yield similar performance, regardless of the deep neural network layer type or fusion strategy. However, the optimal complexity, layer type and fusion remain unknown upfront.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"139 \",\"pages\":\"Article 109574\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624017329\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624017329","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Designing deep neural networks for driver intention recognition
Driver intention recognition (DIR) studies increasingly rely on deep neural networks. Deep neural networks have achieved top performance for many different tasks. However, apart from image classifications and semantic segmentation for mobile phones, it is not a common practice for components of advanced driver assistance systems to explicitly analyze the complexity and performance of the network’s architecture. Therefore, this paper applies neural architecture search to investigate the effects of the deep neural network architecture on a real-world safety critical application with limited computational capabilities. We explore a pre-defined search space for three deep neural network layer types that are capable to handle sequential data (a long-short term memory, temporal convolution, and a time-series transformer layer), and the influence of different data fusion strategies on the driver intention recognition performance. A set of eight search strategies are evaluated for two driver intention recognition datasets. For the two datasets, we observed that there is no search strategy clearly sampling better deep neural network architectures. However, performing an architecture search improves the model performance compared to the original manually designed networks. Furthermore, we observe no relation between increased model complexity and better driver intention recognition performance. The result indicate that multiple architectures can yield similar performance, regardless of the deep neural network layer type or fusion strategy. However, the optimal complexity, layer type and fusion remain unknown upfront.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.