使用组合加权和有限区间云模型对盾构隧道衬砌进行健康评估

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Yu-Wei Zhang , De-Sai Guo , Zhan-Ping Song , Yi-Duo Zhang , Lei Ruan , Zhao-Bo Yan
{"title":"使用组合加权和有限区间云模型对盾构隧道衬砌进行健康评估","authors":"Yu-Wei Zhang ,&nbsp;De-Sai Guo ,&nbsp;Zhan-Ping Song ,&nbsp;Yi-Duo Zhang ,&nbsp;Lei Ruan ,&nbsp;Zhao-Bo Yan","doi":"10.1016/j.engappai.2024.109645","DOIUrl":null,"url":null,"abstract":"<div><div>To solve the problem of inaccurate and unreasonable health evaluation of shield tunnel lining, a novel health evaluation model of shield tunnel lining based on the combination weighting method and finite interval cloud model is proposed. A health evaluation index system including 6 level-Ⅰ indexes and 15 level-II indexes and evaluation criteria are established for the shield tunnel lining. The weights of evaluation indexes are calculated by the game theory combination weighting method. The finite interval cloud model is used to evaluate the health of shield tunnel lining, which considers the uncertainty of various information within the interval. To verify the applicability of the proposed approach, it was applied to the shield construction section from Bei Chen Station to the Olympic Sports Center Station of Xi'an Metro Line 14. The results show that: (1) The health evaluation grade of shield tunnel lining in Samples 1–3 is level II. The result is in agreement with the actual situation which validates the practicality of the employed methodology. (2) The change in the evaluation index has little influence on the evaluation results, and the evaluation results are level II. The key risk factors were identified as <em>U</em><sub>32</sub>, <em>U</em><sub>31</sub>, and <em>U</em><sub>12</sub> by sensitivity analysis. Corresponding measures should be taken to ensure the stability of these three indexes and to ensure the safety of shield tunnel operation. Therefore, the proposed approach maximizes the assurance of the rationality of the evaluation results, which can be feasibly used in various applications and can provide guidance for other similar projects.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109645"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Health evaluation of shield tunnel lining using combination weighting and finite interval cloud model\",\"authors\":\"Yu-Wei Zhang ,&nbsp;De-Sai Guo ,&nbsp;Zhan-Ping Song ,&nbsp;Yi-Duo Zhang ,&nbsp;Lei Ruan ,&nbsp;Zhao-Bo Yan\",\"doi\":\"10.1016/j.engappai.2024.109645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To solve the problem of inaccurate and unreasonable health evaluation of shield tunnel lining, a novel health evaluation model of shield tunnel lining based on the combination weighting method and finite interval cloud model is proposed. A health evaluation index system including 6 level-Ⅰ indexes and 15 level-II indexes and evaluation criteria are established for the shield tunnel lining. The weights of evaluation indexes are calculated by the game theory combination weighting method. The finite interval cloud model is used to evaluate the health of shield tunnel lining, which considers the uncertainty of various information within the interval. To verify the applicability of the proposed approach, it was applied to the shield construction section from Bei Chen Station to the Olympic Sports Center Station of Xi'an Metro Line 14. The results show that: (1) The health evaluation grade of shield tunnel lining in Samples 1–3 is level II. The result is in agreement with the actual situation which validates the practicality of the employed methodology. (2) The change in the evaluation index has little influence on the evaluation results, and the evaluation results are level II. The key risk factors were identified as <em>U</em><sub>32</sub>, <em>U</em><sub>31</sub>, and <em>U</em><sub>12</sub> by sensitivity analysis. Corresponding measures should be taken to ensure the stability of these three indexes and to ensure the safety of shield tunnel operation. Therefore, the proposed approach maximizes the assurance of the rationality of the evaluation results, which can be feasibly used in various applications and can provide guidance for other similar projects.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"139 \",\"pages\":\"Article 109645\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624018037\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624018037","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

为解决盾构隧道衬砌健康评价不准确、不合理的问题,提出了一种基于组合加权法和有限区间云模型的新型盾构隧道衬砌健康评价模型。建立了盾构隧道衬砌健康评价指标体系,包括 6 个Ⅰ级指标和 15 个Ⅱ级指标及评价标准。评价指标权重采用博弈论组合权重法计算。采用有限区间云模型评价盾构隧道衬砌的健康状况,该模型考虑了区间内各种信息的不确定性。为验证所提方法的适用性,将其应用于西安地铁 14 号线北辰站至奥体中心站盾构区间。结果表明(1)样本 1-3 中盾构隧道衬砌的健康评价等级为二级。结果与实际情况相符,验证了所采用方法的实用性。(2)评价指标的变化对评价结果影响不大,评价结果为二级。通过敏感性分析,确定关键风险因素为 U32、U31 和 U12。应采取相应措施保证这三项指标的稳定性,确保盾构隧道运营安全。因此,所提出的方法最大限度地保证了评价结果的合理性,可在各种应用中进行可行性应用,并可为其他类似项目提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Health evaluation of shield tunnel lining using combination weighting and finite interval cloud model
To solve the problem of inaccurate and unreasonable health evaluation of shield tunnel lining, a novel health evaluation model of shield tunnel lining based on the combination weighting method and finite interval cloud model is proposed. A health evaluation index system including 6 level-Ⅰ indexes and 15 level-II indexes and evaluation criteria are established for the shield tunnel lining. The weights of evaluation indexes are calculated by the game theory combination weighting method. The finite interval cloud model is used to evaluate the health of shield tunnel lining, which considers the uncertainty of various information within the interval. To verify the applicability of the proposed approach, it was applied to the shield construction section from Bei Chen Station to the Olympic Sports Center Station of Xi'an Metro Line 14. The results show that: (1) The health evaluation grade of shield tunnel lining in Samples 1–3 is level II. The result is in agreement with the actual situation which validates the practicality of the employed methodology. (2) The change in the evaluation index has little influence on the evaluation results, and the evaluation results are level II. The key risk factors were identified as U32, U31, and U12 by sensitivity analysis. Corresponding measures should be taken to ensure the stability of these three indexes and to ensure the safety of shield tunnel operation. Therefore, the proposed approach maximizes the assurance of the rationality of the evaluation results, which can be feasibly used in various applications and can provide guidance for other similar projects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信