用于智能故障诊断的双视角特征融合的新型混合数据驱动领域泛化方法

IF 7.5 2区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Lanjun Wan , Jian Zhou , Jiaen Ning , Yuanyuan Li , Changyun Li
{"title":"用于智能故障诊断的双视角特征融合的新型混合数据驱动领域泛化方法","authors":"Lanjun Wan ,&nbsp;Jian Zhou ,&nbsp;Jiaen Ning ,&nbsp;Yuanyuan Li ,&nbsp;Changyun Li","doi":"10.1016/j.engappai.2024.109614","DOIUrl":null,"url":null,"abstract":"<div><div>Domain generalization-based fault diagnosis (DGFD) approaches do not require access to the target domain during model training, but they usually rely on numerous labeled source domain data. However, only few labeled source domain data can be obtained in actual diagnosis scenarios. Therefore, a novel hybrid data-driven domain generalization (DG) approach with dual-perspective feature fusion for intelligent fault diagnosis (FD) is proposed. Firstly, to solve the problem of scarce training samples in the source domains, the rolling bearing (RB) and the gear simulated vibration models are established to generate numerous labeled simulated vibration data, and the improved auxiliary classifier generative adversarial network (ACGAN) is used to effectively balance the simulated and real data. Secondly, a simulated and real data-driven DG network that fuses intra-domain invariant features and mutually-invariant features between domains (SRDGN-IM) is proposed, where the intra-domain invariant features are learned through distillation idea and the mutually-invariant features are learned through adversarial training, which can make the diagnosis model better learn the key generalization features from source domains to obtain more accurate diagnosis results. Finally, a series of DG experiments are conducted on the gearbox and bearing datasets, and the average FD accuracies of the proposed approach reach 87.45% and 89.10% respectively under different DG tasks.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109614"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel hybrid data-driven domain generalization approach with dual-perspective feature fusion for intelligent fault diagnosis\",\"authors\":\"Lanjun Wan ,&nbsp;Jian Zhou ,&nbsp;Jiaen Ning ,&nbsp;Yuanyuan Li ,&nbsp;Changyun Li\",\"doi\":\"10.1016/j.engappai.2024.109614\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Domain generalization-based fault diagnosis (DGFD) approaches do not require access to the target domain during model training, but they usually rely on numerous labeled source domain data. However, only few labeled source domain data can be obtained in actual diagnosis scenarios. Therefore, a novel hybrid data-driven domain generalization (DG) approach with dual-perspective feature fusion for intelligent fault diagnosis (FD) is proposed. Firstly, to solve the problem of scarce training samples in the source domains, the rolling bearing (RB) and the gear simulated vibration models are established to generate numerous labeled simulated vibration data, and the improved auxiliary classifier generative adversarial network (ACGAN) is used to effectively balance the simulated and real data. Secondly, a simulated and real data-driven DG network that fuses intra-domain invariant features and mutually-invariant features between domains (SRDGN-IM) is proposed, where the intra-domain invariant features are learned through distillation idea and the mutually-invariant features are learned through adversarial training, which can make the diagnosis model better learn the key generalization features from source domains to obtain more accurate diagnosis results. Finally, a series of DG experiments are conducted on the gearbox and bearing datasets, and the average FD accuracies of the proposed approach reach 87.45% and 89.10% respectively under different DG tasks.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"139 \",\"pages\":\"Article 109614\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095219762401772X\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095219762401772X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

基于领域泛化的故障诊断(DGFD)方法在模型训练过程中不需要访问目标领域,但通常依赖于大量标记的源领域数据。然而,在实际诊断场景中,只能获得很少的标注源域数据。因此,本文提出了一种新颖的混合数据驱动领域泛化(DG)方法和双视角特征融合方法,用于智能故障诊断(FD)。首先,为解决源域训练样本稀缺的问题,建立了滚动轴承(RB)和齿轮模拟振动模型,以生成大量带标签的模拟振动数据,并使用改进的辅助分类器生成对抗网络(ACGAN)来有效平衡模拟数据和真实数据。其次,提出了一种仿真和真实数据驱动的融合域内不变特征和域间互变特征的 DG 网络(SRDGN-IM),其中域内不变特征通过蒸馏思想学习,互变特征通过对抗训练学习,可以使诊断模型更好地学习源域的关键泛化特征,从而获得更准确的诊断结果。最后,在齿轮箱和轴承数据集上进行了一系列 DG 实验,在不同的 DG 任务下,所提出方法的平均 FD 准确率分别达到了 87.45% 和 89.10%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel hybrid data-driven domain generalization approach with dual-perspective feature fusion for intelligent fault diagnosis
Domain generalization-based fault diagnosis (DGFD) approaches do not require access to the target domain during model training, but they usually rely on numerous labeled source domain data. However, only few labeled source domain data can be obtained in actual diagnosis scenarios. Therefore, a novel hybrid data-driven domain generalization (DG) approach with dual-perspective feature fusion for intelligent fault diagnosis (FD) is proposed. Firstly, to solve the problem of scarce training samples in the source domains, the rolling bearing (RB) and the gear simulated vibration models are established to generate numerous labeled simulated vibration data, and the improved auxiliary classifier generative adversarial network (ACGAN) is used to effectively balance the simulated and real data. Secondly, a simulated and real data-driven DG network that fuses intra-domain invariant features and mutually-invariant features between domains (SRDGN-IM) is proposed, where the intra-domain invariant features are learned through distillation idea and the mutually-invariant features are learned through adversarial training, which can make the diagnosis model better learn the key generalization features from source domains to obtain more accurate diagnosis results. Finally, a series of DG experiments are conducted on the gearbox and bearing datasets, and the average FD accuracies of the proposed approach reach 87.45% and 89.10% respectively under different DG tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Engineering Applications of Artificial Intelligence
Engineering Applications of Artificial Intelligence 工程技术-工程:电子与电气
CiteScore
9.60
自引率
10.00%
发文量
505
审稿时长
68 days
期刊介绍: Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信