Jianwei Wang , Xiaofan Jin , Xuchu Liu , Ze He , Jiachen Chai , Pengfa Liu , Yuqing Wang , Wei Cai , Rui Guo
{"title":"内波下浮式平台水气张紧器系统的在线预测","authors":"Jianwei Wang , Xiaofan Jin , Xuchu Liu , Ze He , Jiachen Chai , Pengfa Liu , Yuqing Wang , Wei Cai , Rui Guo","doi":"10.1016/j.engappai.2024.109656","DOIUrl":null,"url":null,"abstract":"<div><div>To address the issue of low accuracy in the current motion response prediction model of the floating platform tensioner system, this paper proposes an online prediction method that integrates Empirical Mode Decomposition (EMD), Kernel Principal Component Analysis (KPCA), and Long Short-Term Memory (LSTM). The EMD technique is employed to decompose the sequence of environmental factors, reducing their non-stationarity. Subsequently, KPCA is used to extract key influencing factors and reduce input dimensionality. Finally, LSTM neural networks are applied to capture long-term dependencies in features and make accurate predictions. By validating the model using motion response data from the tensioner platform device under two scenarios with and without internal waves, it is compared against other models. The results show that the EMD-KPCA-LSTM model has high prediction accuracy in both scenarios. In particular, compared with the Convolutional Neural Network (CNN) model, the mean Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) of the displacement and tension of the system decreased by 52.97%, 55.14%, 56.31%, 68.97%, 71.02% 57.60%, respectively, and R-square (R<sup>2</sup>) increased by 7.14% and 12.37%. In summary, the model has a good ability for data fitting and high prediction accuracy and has important practical value.</div></div>","PeriodicalId":50523,"journal":{"name":"Engineering Applications of Artificial Intelligence","volume":"139 ","pages":"Article 109656"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online prediction of hydro-pneumatic tensioner system of floating platform under internal waves\",\"authors\":\"Jianwei Wang , Xiaofan Jin , Xuchu Liu , Ze He , Jiachen Chai , Pengfa Liu , Yuqing Wang , Wei Cai , Rui Guo\",\"doi\":\"10.1016/j.engappai.2024.109656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To address the issue of low accuracy in the current motion response prediction model of the floating platform tensioner system, this paper proposes an online prediction method that integrates Empirical Mode Decomposition (EMD), Kernel Principal Component Analysis (KPCA), and Long Short-Term Memory (LSTM). The EMD technique is employed to decompose the sequence of environmental factors, reducing their non-stationarity. Subsequently, KPCA is used to extract key influencing factors and reduce input dimensionality. Finally, LSTM neural networks are applied to capture long-term dependencies in features and make accurate predictions. By validating the model using motion response data from the tensioner platform device under two scenarios with and without internal waves, it is compared against other models. The results show that the EMD-KPCA-LSTM model has high prediction accuracy in both scenarios. In particular, compared with the Convolutional Neural Network (CNN) model, the mean Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) of the displacement and tension of the system decreased by 52.97%, 55.14%, 56.31%, 68.97%, 71.02% 57.60%, respectively, and R-square (R<sup>2</sup>) increased by 7.14% and 12.37%. In summary, the model has a good ability for data fitting and high prediction accuracy and has important practical value.</div></div>\",\"PeriodicalId\":50523,\"journal\":{\"name\":\"Engineering Applications of Artificial Intelligence\",\"volume\":\"139 \",\"pages\":\"Article 109656\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Applications of Artificial Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0952197624018141\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Applications of Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0952197624018141","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Online prediction of hydro-pneumatic tensioner system of floating platform under internal waves
To address the issue of low accuracy in the current motion response prediction model of the floating platform tensioner system, this paper proposes an online prediction method that integrates Empirical Mode Decomposition (EMD), Kernel Principal Component Analysis (KPCA), and Long Short-Term Memory (LSTM). The EMD technique is employed to decompose the sequence of environmental factors, reducing their non-stationarity. Subsequently, KPCA is used to extract key influencing factors and reduce input dimensionality. Finally, LSTM neural networks are applied to capture long-term dependencies in features and make accurate predictions. By validating the model using motion response data from the tensioner platform device under two scenarios with and without internal waves, it is compared against other models. The results show that the EMD-KPCA-LSTM model has high prediction accuracy in both scenarios. In particular, compared with the Convolutional Neural Network (CNN) model, the mean Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) of the displacement and tension of the system decreased by 52.97%, 55.14%, 56.31%, 68.97%, 71.02% 57.60%, respectively, and R-square (R2) increased by 7.14% and 12.37%. In summary, the model has a good ability for data fitting and high prediction accuracy and has important practical value.
期刊介绍:
Artificial Intelligence (AI) is pivotal in driving the fourth industrial revolution, witnessing remarkable advancements across various machine learning methodologies. AI techniques have become indispensable tools for practicing engineers, enabling them to tackle previously insurmountable challenges. Engineering Applications of Artificial Intelligence serves as a global platform for the swift dissemination of research elucidating the practical application of AI methods across all engineering disciplines. Submitted papers are expected to present novel aspects of AI utilized in real-world engineering applications, validated using publicly available datasets to ensure the replicability of research outcomes. Join us in exploring the transformative potential of AI in engineering.