Jun Yin , Heping Jia , Laijun Chen , Dunnan Liu , Shengwei Mei , Sheng Wang
{"title":"考虑氢储能系统变异特性的零碳园区优化调度","authors":"Jun Yin , Heping Jia , Laijun Chen , Dunnan Liu , Shengwei Mei , Sheng Wang","doi":"10.1016/j.gloei.2024.10.007","DOIUrl":null,"url":null,"abstract":"<div><div>Zero-carbon parks have broad prospects in carbon neutralization. As an energy hub, hydrogen energy storage plays an important role in zero-carbon parks. However, the nonlinear characteristics of hydrogen energy storage systems (HESSs) have a significant impact on the system economy. Therefore, considering the variable working condition characteristics of HESSs, a hybrid operation method is proposed for HESS, to support the efficient and economic operation of zero-carbon parks, by analyzing the operating principle of a zero-carbon park with HESS, the system structure framework and variable condition linearization model of the equipment in HESS are established. Moreover, considering the energy output characteristics of hydrogen energy storage equipment under variable working conditions, a multimodule hybrid operation strategy is proposed for electrolytic and fuel cells, effectively meeting the thermoelectric load demand of zero- carbon parks in different scenarios. Finally, the economy of the proposed hybrid operation strategy was verified in typical scenarios, using a zero-carbon park embedded with a HESS.</div></div>","PeriodicalId":36174,"journal":{"name":"Global Energy Interconnection","volume":"7 5","pages":"Pages 603-615"},"PeriodicalIF":1.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal scheduling of zero-carbon park considering variational characteristics of hydrogen energy storage systems\",\"authors\":\"Jun Yin , Heping Jia , Laijun Chen , Dunnan Liu , Shengwei Mei , Sheng Wang\",\"doi\":\"10.1016/j.gloei.2024.10.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Zero-carbon parks have broad prospects in carbon neutralization. As an energy hub, hydrogen energy storage plays an important role in zero-carbon parks. However, the nonlinear characteristics of hydrogen energy storage systems (HESSs) have a significant impact on the system economy. Therefore, considering the variable working condition characteristics of HESSs, a hybrid operation method is proposed for HESS, to support the efficient and economic operation of zero-carbon parks, by analyzing the operating principle of a zero-carbon park with HESS, the system structure framework and variable condition linearization model of the equipment in HESS are established. Moreover, considering the energy output characteristics of hydrogen energy storage equipment under variable working conditions, a multimodule hybrid operation strategy is proposed for electrolytic and fuel cells, effectively meeting the thermoelectric load demand of zero- carbon parks in different scenarios. Finally, the economy of the proposed hybrid operation strategy was verified in typical scenarios, using a zero-carbon park embedded with a HESS.</div></div>\",\"PeriodicalId\":36174,\"journal\":{\"name\":\"Global Energy Interconnection\",\"volume\":\"7 5\",\"pages\":\"Pages 603-615\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Energy Interconnection\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2096511724000884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Energy Interconnection","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2096511724000884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Optimal scheduling of zero-carbon park considering variational characteristics of hydrogen energy storage systems
Zero-carbon parks have broad prospects in carbon neutralization. As an energy hub, hydrogen energy storage plays an important role in zero-carbon parks. However, the nonlinear characteristics of hydrogen energy storage systems (HESSs) have a significant impact on the system economy. Therefore, considering the variable working condition characteristics of HESSs, a hybrid operation method is proposed for HESS, to support the efficient and economic operation of zero-carbon parks, by analyzing the operating principle of a zero-carbon park with HESS, the system structure framework and variable condition linearization model of the equipment in HESS are established. Moreover, considering the energy output characteristics of hydrogen energy storage equipment under variable working conditions, a multimodule hybrid operation strategy is proposed for electrolytic and fuel cells, effectively meeting the thermoelectric load demand of zero- carbon parks in different scenarios. Finally, the economy of the proposed hybrid operation strategy was verified in typical scenarios, using a zero-carbon park embedded with a HESS.