Jun Pan , Jiangong Xu , Xiaoyu Yu , Guo Ye , Mi Wang , Yumin Chen , Jianshen Ma
{"title":"HDRSA-Net:用于合成孔径雷达辅助光学图像云和阴影去除的混合动态残差自注意网络","authors":"Jun Pan , Jiangong Xu , Xiaoyu Yu , Guo Ye , Mi Wang , Yumin Chen , Jianshen Ma","doi":"10.1016/j.isprsjprs.2024.10.026","DOIUrl":null,"url":null,"abstract":"<div><div>Clouds and shadows often contaminate optical remote sensing images, resulting in missing information. Consequently, continuous spatiotemporal monitoring of the Earth’s surface requires the efficient removal of clouds and shadows. Unlike optical satellites, synthetic aperture radar (SAR) has active imaging capabilities in all weather conditions, supplying valuable supplementary information for reconstructing missing regions. Nevertheless, the reconstruction of high-fidelity cloud-free images based on SAR-optical data fusion remains challenging due to differences in imaging mechanisms and the considerable contamination from speckle noise inherent in SAR imagery. To solve the aforementioned challenges, this paper presents a novel hybrid dynamic residual self-attention network (HDRSA-Net), aiming to fully exploit the potential of SAR images in reconstructing missing regions. The proposed HDRSA-Net comprises multiple dynamic interaction residual (DIR) groups organized into an end-to-end trainable deep hierarchical stacked architecture. Specifically, the omni-dimensional dynamic local exploration (ODDLE) module and the sparse global context aggregation (SGCA) module are used to form a local–global feature adaptive extraction and implicit enhancement. A multi-task cooperative optimization loss function is designed to ensure that the results exhibit high spectral fidelity and coherent spatial structures. Additionally, this paper releases a large dataset that can comprehensively evaluate the reconstruction quality under different cloud coverages and various types of ground cover, providing a solid foundation for restoring satisfactory sensory effects and reliable semantic application value. In comparison to the current representative algorithms, the presented approach exhibits effectiveness and advancement in reconstructing missing regions with stability. The project is accessible at: <span><span>https://github.com/RSIIPAC/LuojiaSET-OSFCR</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":"218 ","pages":"Pages 258-275"},"PeriodicalIF":10.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HDRSA-Net: Hybrid dynamic residual self-attention network for SAR-assisted optical image cloud and shadow removal\",\"authors\":\"Jun Pan , Jiangong Xu , Xiaoyu Yu , Guo Ye , Mi Wang , Yumin Chen , Jianshen Ma\",\"doi\":\"10.1016/j.isprsjprs.2024.10.026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Clouds and shadows often contaminate optical remote sensing images, resulting in missing information. Consequently, continuous spatiotemporal monitoring of the Earth’s surface requires the efficient removal of clouds and shadows. Unlike optical satellites, synthetic aperture radar (SAR) has active imaging capabilities in all weather conditions, supplying valuable supplementary information for reconstructing missing regions. Nevertheless, the reconstruction of high-fidelity cloud-free images based on SAR-optical data fusion remains challenging due to differences in imaging mechanisms and the considerable contamination from speckle noise inherent in SAR imagery. To solve the aforementioned challenges, this paper presents a novel hybrid dynamic residual self-attention network (HDRSA-Net), aiming to fully exploit the potential of SAR images in reconstructing missing regions. The proposed HDRSA-Net comprises multiple dynamic interaction residual (DIR) groups organized into an end-to-end trainable deep hierarchical stacked architecture. Specifically, the omni-dimensional dynamic local exploration (ODDLE) module and the sparse global context aggregation (SGCA) module are used to form a local–global feature adaptive extraction and implicit enhancement. A multi-task cooperative optimization loss function is designed to ensure that the results exhibit high spectral fidelity and coherent spatial structures. Additionally, this paper releases a large dataset that can comprehensively evaluate the reconstruction quality under different cloud coverages and various types of ground cover, providing a solid foundation for restoring satisfactory sensory effects and reliable semantic application value. In comparison to the current representative algorithms, the presented approach exhibits effectiveness and advancement in reconstructing missing regions with stability. The project is accessible at: <span><span>https://github.com/RSIIPAC/LuojiaSET-OSFCR</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":\"218 \",\"pages\":\"Pages 258-275\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924271624004039\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924271624004039","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
HDRSA-Net: Hybrid dynamic residual self-attention network for SAR-assisted optical image cloud and shadow removal
Clouds and shadows often contaminate optical remote sensing images, resulting in missing information. Consequently, continuous spatiotemporal monitoring of the Earth’s surface requires the efficient removal of clouds and shadows. Unlike optical satellites, synthetic aperture radar (SAR) has active imaging capabilities in all weather conditions, supplying valuable supplementary information for reconstructing missing regions. Nevertheless, the reconstruction of high-fidelity cloud-free images based on SAR-optical data fusion remains challenging due to differences in imaging mechanisms and the considerable contamination from speckle noise inherent in SAR imagery. To solve the aforementioned challenges, this paper presents a novel hybrid dynamic residual self-attention network (HDRSA-Net), aiming to fully exploit the potential of SAR images in reconstructing missing regions. The proposed HDRSA-Net comprises multiple dynamic interaction residual (DIR) groups organized into an end-to-end trainable deep hierarchical stacked architecture. Specifically, the omni-dimensional dynamic local exploration (ODDLE) module and the sparse global context aggregation (SGCA) module are used to form a local–global feature adaptive extraction and implicit enhancement. A multi-task cooperative optimization loss function is designed to ensure that the results exhibit high spectral fidelity and coherent spatial structures. Additionally, this paper releases a large dataset that can comprehensively evaluate the reconstruction quality under different cloud coverages and various types of ground cover, providing a solid foundation for restoring satisfactory sensory effects and reliable semantic application value. In comparison to the current representative algorithms, the presented approach exhibits effectiveness and advancement in reconstructing missing regions with stability. The project is accessible at: https://github.com/RSIIPAC/LuojiaSET-OSFCR.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.