Irina A. Mizeva , Natalia P. Podolyan , Oleg V. Mamontov , Anastasiia V. Sakovskaia , Alexei A. Kamshilin
{"title":"利用成像光压描记术研究局部加热下微循环中的 0.1 赫兹血管运动","authors":"Irina A. Mizeva , Natalia P. Podolyan , Oleg V. Mamontov , Anastasiia V. Sakovskaia , Alexei A. Kamshilin","doi":"10.1016/j.bspc.2024.107188","DOIUrl":null,"url":null,"abstract":"<div><div>Low-frequency oscillations in the human circulatory system is important for basic physiology and practical applications in clinical medicine. Our objective was to study which mechanism (central or local) is responsible for changes in blood flow fluctuations at around 0.1 Hz. We used the method of imaging photoplethysmography synchronized with electrocardiography to measure blood-flow response to local forearm heating of 18 healthy male volunteers. The dynamics of peripheral perfusion was revealed by a correlation processing of photoplethysmography data, and the central hemodynamics was assessed from the electrocardiogram. Wavelet analysis was used to estimate the dynamics of spectral components. Our results show that skin heating leads to multiple increase in local perfusion accompanied by drop in blood flow oscillations at 0.1 Hz, whereas no changes in heart rate variability was observed. After switching off the heating, perfusion remains at the high level, regardless decrease in skin temperature. The 0.1 Hz oscillations are smoothly recovered to the base level. In conclusion, we confirm the local nature of fluctuations in peripheral blood flow in the frequency band of about 0.1 Hz. A significant, but time-delayed, recovery of fluctuation energy in this frequency range after cessation of the skin warming was discovered. This study reveals a novel factor involved in the regulation microcirculatory vascular tone. A comprehensive study of hemodynamics using the new technique of imaging photoplethysmography synchronized with electrocardiography is a prerequisite for development of a valuable diagnostic tool.</div></div>","PeriodicalId":55362,"journal":{"name":"Biomedical Signal Processing and Control","volume":"100 ","pages":"Article 107188"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of 0.1-Hz vasomotion in microcirculation under local heating by means of imaging photoplethysmography\",\"authors\":\"Irina A. Mizeva , Natalia P. Podolyan , Oleg V. Mamontov , Anastasiia V. Sakovskaia , Alexei A. Kamshilin\",\"doi\":\"10.1016/j.bspc.2024.107188\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Low-frequency oscillations in the human circulatory system is important for basic physiology and practical applications in clinical medicine. Our objective was to study which mechanism (central or local) is responsible for changes in blood flow fluctuations at around 0.1 Hz. We used the method of imaging photoplethysmography synchronized with electrocardiography to measure blood-flow response to local forearm heating of 18 healthy male volunteers. The dynamics of peripheral perfusion was revealed by a correlation processing of photoplethysmography data, and the central hemodynamics was assessed from the electrocardiogram. Wavelet analysis was used to estimate the dynamics of spectral components. Our results show that skin heating leads to multiple increase in local perfusion accompanied by drop in blood flow oscillations at 0.1 Hz, whereas no changes in heart rate variability was observed. After switching off the heating, perfusion remains at the high level, regardless decrease in skin temperature. The 0.1 Hz oscillations are smoothly recovered to the base level. In conclusion, we confirm the local nature of fluctuations in peripheral blood flow in the frequency band of about 0.1 Hz. A significant, but time-delayed, recovery of fluctuation energy in this frequency range after cessation of the skin warming was discovered. This study reveals a novel factor involved in the regulation microcirculatory vascular tone. A comprehensive study of hemodynamics using the new technique of imaging photoplethysmography synchronized with electrocardiography is a prerequisite for development of a valuable diagnostic tool.</div></div>\",\"PeriodicalId\":55362,\"journal\":{\"name\":\"Biomedical Signal Processing and Control\",\"volume\":\"100 \",\"pages\":\"Article 107188\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical Signal Processing and Control\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1746809424012461\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Signal Processing and Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1746809424012461","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Study of 0.1-Hz vasomotion in microcirculation under local heating by means of imaging photoplethysmography
Low-frequency oscillations in the human circulatory system is important for basic physiology and practical applications in clinical medicine. Our objective was to study which mechanism (central or local) is responsible for changes in blood flow fluctuations at around 0.1 Hz. We used the method of imaging photoplethysmography synchronized with electrocardiography to measure blood-flow response to local forearm heating of 18 healthy male volunteers. The dynamics of peripheral perfusion was revealed by a correlation processing of photoplethysmography data, and the central hemodynamics was assessed from the electrocardiogram. Wavelet analysis was used to estimate the dynamics of spectral components. Our results show that skin heating leads to multiple increase in local perfusion accompanied by drop in blood flow oscillations at 0.1 Hz, whereas no changes in heart rate variability was observed. After switching off the heating, perfusion remains at the high level, regardless decrease in skin temperature. The 0.1 Hz oscillations are smoothly recovered to the base level. In conclusion, we confirm the local nature of fluctuations in peripheral blood flow in the frequency band of about 0.1 Hz. A significant, but time-delayed, recovery of fluctuation energy in this frequency range after cessation of the skin warming was discovered. This study reveals a novel factor involved in the regulation microcirculatory vascular tone. A comprehensive study of hemodynamics using the new technique of imaging photoplethysmography synchronized with electrocardiography is a prerequisite for development of a valuable diagnostic tool.
期刊介绍:
Biomedical Signal Processing and Control aims to provide a cross-disciplinary international forum for the interchange of information on research in the measurement and analysis of signals and images in clinical medicine and the biological sciences. Emphasis is placed on contributions dealing with the practical, applications-led research on the use of methods and devices in clinical diagnosis, patient monitoring and management.
Biomedical Signal Processing and Control reflects the main areas in which these methods are being used and developed at the interface of both engineering and clinical science. The scope of the journal is defined to include relevant review papers, technical notes, short communications and letters. Tutorial papers and special issues will also be published.