在线社交网站中的意识形态取向和极端主义检测:系统回顾

Kamalakkannan Ravi, Jiann-Shiun Yuan
{"title":"在线社交网站中的意识形态取向和极端主义检测:系统回顾","authors":"Kamalakkannan Ravi,&nbsp;Jiann-Shiun Yuan","doi":"10.1016/j.iswa.2024.200456","DOIUrl":null,"url":null,"abstract":"<div><div>The rise of social networking sites has reshaped digital interactions, becoming fertile grounds for extremist ideologies, notably in the United States. Despite previous research, understanding and tackling online ideological extremism remains challenging. In this context, we conduct a systematic literature review to comprehensively analyze existing research and offer insights for both researchers and policymakers. Spanning from 2005 to 2023, our review includes 110 primary research articles across platforms like Twitter (X), Facebook, Reddit, TikTok, Telegram, and Parler. We observe a diverse array of methodologies, including natural language processing (NLP), machine learning (ML), deep learning (DL), graph-based methods, dictionary-based methods, and statistical approaches. Through synthesis, we aim to advance understanding and provide actionable recommendations for combating ideological extremism effectively on online social networking sites.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"24 ","pages":"Article 200456"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ideological orientation and extremism detection in online social networking sites: A systematic review\",\"authors\":\"Kamalakkannan Ravi,&nbsp;Jiann-Shiun Yuan\",\"doi\":\"10.1016/j.iswa.2024.200456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rise of social networking sites has reshaped digital interactions, becoming fertile grounds for extremist ideologies, notably in the United States. Despite previous research, understanding and tackling online ideological extremism remains challenging. In this context, we conduct a systematic literature review to comprehensively analyze existing research and offer insights for both researchers and policymakers. Spanning from 2005 to 2023, our review includes 110 primary research articles across platforms like Twitter (X), Facebook, Reddit, TikTok, Telegram, and Parler. We observe a diverse array of methodologies, including natural language processing (NLP), machine learning (ML), deep learning (DL), graph-based methods, dictionary-based methods, and statistical approaches. Through synthesis, we aim to advance understanding and provide actionable recommendations for combating ideological extremism effectively on online social networking sites.</div></div>\",\"PeriodicalId\":100684,\"journal\":{\"name\":\"Intelligent Systems with Applications\",\"volume\":\"24 \",\"pages\":\"Article 200456\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667305324001303\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324001303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

社交网站的兴起重塑了数字互动,成为极端主义意识形态的沃土,尤其是在美国。尽管此前已有相关研究,但理解和应对网络意识形态极端主义仍具有挑战性。在此背景下,我们进行了系统的文献综述,全面分析现有研究,为研究人员和政策制定者提供见解。从 2005 年到 2023 年,我们的综述包括 110 篇主要研究文章,涉及 Twitter (X)、Facebook、Reddit、TikTok、Telegram 和 Parler 等平台。我们观察了各种方法,包括自然语言处理(NLP)、机器学习(ML)、深度学习(DL)、基于图的方法、基于词典的方法和统计方法。通过综合分析,我们旨在加深理解,并为有效打击在线社交网站上的意识形态极端主义提供可操作的建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Ideological orientation and extremism detection in online social networking sites: A systematic review

Ideological orientation and extremism detection in online social networking sites: A systematic review
The rise of social networking sites has reshaped digital interactions, becoming fertile grounds for extremist ideologies, notably in the United States. Despite previous research, understanding and tackling online ideological extremism remains challenging. In this context, we conduct a systematic literature review to comprehensively analyze existing research and offer insights for both researchers and policymakers. Spanning from 2005 to 2023, our review includes 110 primary research articles across platforms like Twitter (X), Facebook, Reddit, TikTok, Telegram, and Parler. We observe a diverse array of methodologies, including natural language processing (NLP), machine learning (ML), deep learning (DL), graph-based methods, dictionary-based methods, and statistical approaches. Through synthesis, we aim to advance understanding and provide actionable recommendations for combating ideological extremism effectively on online social networking sites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信