Peifang Liu , Jiang Guo , Fangqing Zhang , Ye Zou , Junjie Tang
{"title":"多目标优化整合电动汽车和风能的电力网络","authors":"Peifang Liu , Jiang Guo , Fangqing Zhang , Ye Zou , Junjie Tang","doi":"10.1016/j.iswa.2024.200452","DOIUrl":null,"url":null,"abstract":"<div><div>In the ever-evolving landscape of power networks, the integration of diverse sources, including electric vehicles (EVs) and renewable energies like wind power, has gained prominence. With the rapid proliferation of plug-in electric vehicles (PEVs), their optimal utilization hinges on reconciling conflicting and adaptable targets, including facilitating vehicle-to-grid (V2 G) connectivity or harmonizing with the broader energy ecosystem. Simultaneously, the inexorable integration of wind resources into power networks underscores the critical need for multi-purpose planning to optimize production and reduce costs. This study tackles this multifaceted challenge, incorporating the presence of EVs and a probabilistic wind resource model. Addressing the complexity of the issue, we devise a multi-purpose method grounded in collective competition, effectively reducing computational complexity and creatively enhancing the model's performance with a Pareto front optimality point. To discern the ideal response, fuzzy theory is employed. The suggested pattern is rigorously tested on two well-established IEEE power networks (30- and 118-bus) in diverse scenarios featuring windmills and PEV producers, with outcomes showcasing the remarkable excellence of our multi-purpose framework in addressing this intricate issue while accommodating uncertainty.</div></div>","PeriodicalId":100684,"journal":{"name":"Intelligent Systems with Applications","volume":"24 ","pages":"Article 200452"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimization of power networks integrating electric vehicles and wind energy\",\"authors\":\"Peifang Liu , Jiang Guo , Fangqing Zhang , Ye Zou , Junjie Tang\",\"doi\":\"10.1016/j.iswa.2024.200452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the ever-evolving landscape of power networks, the integration of diverse sources, including electric vehicles (EVs) and renewable energies like wind power, has gained prominence. With the rapid proliferation of plug-in electric vehicles (PEVs), their optimal utilization hinges on reconciling conflicting and adaptable targets, including facilitating vehicle-to-grid (V2 G) connectivity or harmonizing with the broader energy ecosystem. Simultaneously, the inexorable integration of wind resources into power networks underscores the critical need for multi-purpose planning to optimize production and reduce costs. This study tackles this multifaceted challenge, incorporating the presence of EVs and a probabilistic wind resource model. Addressing the complexity of the issue, we devise a multi-purpose method grounded in collective competition, effectively reducing computational complexity and creatively enhancing the model's performance with a Pareto front optimality point. To discern the ideal response, fuzzy theory is employed. The suggested pattern is rigorously tested on two well-established IEEE power networks (30- and 118-bus) in diverse scenarios featuring windmills and PEV producers, with outcomes showcasing the remarkable excellence of our multi-purpose framework in addressing this intricate issue while accommodating uncertainty.</div></div>\",\"PeriodicalId\":100684,\"journal\":{\"name\":\"Intelligent Systems with Applications\",\"volume\":\"24 \",\"pages\":\"Article 200452\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Systems with Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667305324001261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Systems with Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667305324001261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-objective optimization of power networks integrating electric vehicles and wind energy
In the ever-evolving landscape of power networks, the integration of diverse sources, including electric vehicles (EVs) and renewable energies like wind power, has gained prominence. With the rapid proliferation of plug-in electric vehicles (PEVs), their optimal utilization hinges on reconciling conflicting and adaptable targets, including facilitating vehicle-to-grid (V2 G) connectivity or harmonizing with the broader energy ecosystem. Simultaneously, the inexorable integration of wind resources into power networks underscores the critical need for multi-purpose planning to optimize production and reduce costs. This study tackles this multifaceted challenge, incorporating the presence of EVs and a probabilistic wind resource model. Addressing the complexity of the issue, we devise a multi-purpose method grounded in collective competition, effectively reducing computational complexity and creatively enhancing the model's performance with a Pareto front optimality point. To discern the ideal response, fuzzy theory is employed. The suggested pattern is rigorously tested on two well-established IEEE power networks (30- and 118-bus) in diverse scenarios featuring windmills and PEV producers, with outcomes showcasing the remarkable excellence of our multi-purpose framework in addressing this intricate issue while accommodating uncertainty.