{"title":"虚假数据注入攻击下网络控制系统事件触发自适应滑模控制的动态量化","authors":"Xinggui Zhao, Bo Meng, Zhen Wang","doi":"10.1016/j.ins.2024.121626","DOIUrl":null,"url":null,"abstract":"<div><div>The dynamic quantization of event-triggered (ET) adaptive sliding mode control (SM, SMC) for networked control systems (NCS) under false data injection attack (FDIA) is considered in this article. To begin with, to reduce the network transmission burden, dynamic quantizers are used to quantize the states and the input on the channels from the plant to the ET mechanism and from the controller to the plant, respectively. Secondly, the dynamic ET mechanism employs quantized state error, and the existence of the minimum inter-event time demonstrates that the system does not experience the Zeno phenomenon. Thirdly, this paper uses the adaptive parameter to estimate the unknown upper bound of the attack mode. In addition, the range of values for the adaptive gain of the SMC is derived by combining with the Lyapunov stability theory. On the last, the comparative simulation results of different methods for numerical examples are given to verify the superiority of the method proposed in this paper.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"691 ","pages":"Article 121626"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic quantization of event-triggered adaptive sliding mode control for networked control systems under false data injection attack\",\"authors\":\"Xinggui Zhao, Bo Meng, Zhen Wang\",\"doi\":\"10.1016/j.ins.2024.121626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The dynamic quantization of event-triggered (ET) adaptive sliding mode control (SM, SMC) for networked control systems (NCS) under false data injection attack (FDIA) is considered in this article. To begin with, to reduce the network transmission burden, dynamic quantizers are used to quantize the states and the input on the channels from the plant to the ET mechanism and from the controller to the plant, respectively. Secondly, the dynamic ET mechanism employs quantized state error, and the existence of the minimum inter-event time demonstrates that the system does not experience the Zeno phenomenon. Thirdly, this paper uses the adaptive parameter to estimate the unknown upper bound of the attack mode. In addition, the range of values for the adaptive gain of the SMC is derived by combining with the Lyapunov stability theory. On the last, the comparative simulation results of different methods for numerical examples are given to verify the superiority of the method proposed in this paper.</div></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":\"691 \",\"pages\":\"Article 121626\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025524015408\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524015408","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了在虚假数据注入攻击(FDIA)下网络控制系统(NCS)的事件触发(ET)自适应滑模控制(SM,SMC)的动态量化问题。首先,为了减少网络传输负担,本文使用动态量化器分别量化从工厂到 ET 机制以及从控制器到工厂的通道上的状态和输入。其次,动态 ET 机制采用量化状态误差,最小事件间时间的存在表明系统不会出现芝诺现象。第三,本文利用自适应参数估计攻击模式的未知上限。此外,本文还结合李雅普诺夫稳定性理论,得出了 SMC 自适应增益的取值范围。最后,本文给出了不同方法的数值实例仿真结果对比,以验证本文所提方法的优越性。
Dynamic quantization of event-triggered adaptive sliding mode control for networked control systems under false data injection attack
The dynamic quantization of event-triggered (ET) adaptive sliding mode control (SM, SMC) for networked control systems (NCS) under false data injection attack (FDIA) is considered in this article. To begin with, to reduce the network transmission burden, dynamic quantizers are used to quantize the states and the input on the channels from the plant to the ET mechanism and from the controller to the plant, respectively. Secondly, the dynamic ET mechanism employs quantized state error, and the existence of the minimum inter-event time demonstrates that the system does not experience the Zeno phenomenon. Thirdly, this paper uses the adaptive parameter to estimate the unknown upper bound of the attack mode. In addition, the range of values for the adaptive gain of the SMC is derived by combining with the Lyapunov stability theory. On the last, the comparative simulation results of different methods for numerical examples are given to verify the superiority of the method proposed in this paper.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.