Ahmed Anas , Ayman A. Alhelbawy , Salwa El Gamal , Basheer Youssef
{"title":"BACAD:基于人工智能的垂直破坏访问控制攻击检测框架","authors":"Ahmed Anas , Ayman A. Alhelbawy , Salwa El Gamal , Basheer Youssef","doi":"10.1016/j.eij.2024.100571","DOIUrl":null,"url":null,"abstract":"<div><div>Vertical Broken Access Control (VBAC) vulnerability is one of the most commonly identified issues in web applications, posing significant risks. Consequently, addressing this pervasive threat is crucial for ensuring system confidentiality and integrity. Broken access control attack detector (BACAD) is a novel framework that leverages advanced AI techniques to neutralize VBAC exploits and attacks in real-time using a dynamic and practical technique. The detection process consists of two steps. The first step is user role classification using an advanced artificial intelligence (AI) model created in a learning phase. The learning phase includes BACAD initial configuration and application user roles traffic generation used for AI model training. The AI model at the core of BACAD analyzes web requests and responses utilizing a robust feature extraction, and dynamic hyperparameter tuning to ensure optimal performance across diverse scenarios. The second step is the decision step, which determines whether the incoming request–response pair is benign or an attack by validating it vs the BACAD session information set. The evaluation against a spectrum of real-world and demonstration web applications highlights remarkable efficiency in detecting VBAC exploits, providing robust application protection against different sets of VBAC attacks. Furthermore, it shows that BACAD addresses the VBAC problem by presenting an applicable, dynamic, flexible, and technology-independent solution to counter VBAC vulnerability risks. Thus, BACAD contributes significantly to the ongoing efforts aimed at enhancing web application security.</div></div>","PeriodicalId":56010,"journal":{"name":"Egyptian Informatics Journal","volume":"28 ","pages":"Article 100571"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BACAD: AI-based framework for detecting vertical broken access control attacks\",\"authors\":\"Ahmed Anas , Ayman A. Alhelbawy , Salwa El Gamal , Basheer Youssef\",\"doi\":\"10.1016/j.eij.2024.100571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vertical Broken Access Control (VBAC) vulnerability is one of the most commonly identified issues in web applications, posing significant risks. Consequently, addressing this pervasive threat is crucial for ensuring system confidentiality and integrity. Broken access control attack detector (BACAD) is a novel framework that leverages advanced AI techniques to neutralize VBAC exploits and attacks in real-time using a dynamic and practical technique. The detection process consists of two steps. The first step is user role classification using an advanced artificial intelligence (AI) model created in a learning phase. The learning phase includes BACAD initial configuration and application user roles traffic generation used for AI model training. The AI model at the core of BACAD analyzes web requests and responses utilizing a robust feature extraction, and dynamic hyperparameter tuning to ensure optimal performance across diverse scenarios. The second step is the decision step, which determines whether the incoming request–response pair is benign or an attack by validating it vs the BACAD session information set. The evaluation against a spectrum of real-world and demonstration web applications highlights remarkable efficiency in detecting VBAC exploits, providing robust application protection against different sets of VBAC attacks. Furthermore, it shows that BACAD addresses the VBAC problem by presenting an applicable, dynamic, flexible, and technology-independent solution to counter VBAC vulnerability risks. Thus, BACAD contributes significantly to the ongoing efforts aimed at enhancing web application security.</div></div>\",\"PeriodicalId\":56010,\"journal\":{\"name\":\"Egyptian Informatics Journal\",\"volume\":\"28 \",\"pages\":\"Article 100571\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Egyptian Informatics Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1110866524001348\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Informatics Journal","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110866524001348","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
BACAD: AI-based framework for detecting vertical broken access control attacks
Vertical Broken Access Control (VBAC) vulnerability is one of the most commonly identified issues in web applications, posing significant risks. Consequently, addressing this pervasive threat is crucial for ensuring system confidentiality and integrity. Broken access control attack detector (BACAD) is a novel framework that leverages advanced AI techniques to neutralize VBAC exploits and attacks in real-time using a dynamic and practical technique. The detection process consists of two steps. The first step is user role classification using an advanced artificial intelligence (AI) model created in a learning phase. The learning phase includes BACAD initial configuration and application user roles traffic generation used for AI model training. The AI model at the core of BACAD analyzes web requests and responses utilizing a robust feature extraction, and dynamic hyperparameter tuning to ensure optimal performance across diverse scenarios. The second step is the decision step, which determines whether the incoming request–response pair is benign or an attack by validating it vs the BACAD session information set. The evaluation against a spectrum of real-world and demonstration web applications highlights remarkable efficiency in detecting VBAC exploits, providing robust application protection against different sets of VBAC attacks. Furthermore, it shows that BACAD addresses the VBAC problem by presenting an applicable, dynamic, flexible, and technology-independent solution to counter VBAC vulnerability risks. Thus, BACAD contributes significantly to the ongoing efforts aimed at enhancing web application security.
期刊介绍:
The Egyptian Informatics Journal is published by the Faculty of Computers and Artificial Intelligence, Cairo University. This Journal provides a forum for the state-of-the-art research and development in the fields of computing, including computer sciences, information technologies, information systems, operations research and decision support. Innovative and not-previously-published work in subjects covered by the Journal is encouraged to be submitted, whether from academic, research or commercial sources.