基于决策变量分类响应的动态多目标优化

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS
Jianxia Li, Ruochen Liu, Ruinan Wang
{"title":"基于决策变量分类响应的动态多目标优化","authors":"Jianxia Li,&nbsp;Ruochen Liu,&nbsp;Ruinan Wang","doi":"10.1016/j.ins.2024.121611","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, many dynamic multi-objective optimization algorithms (DMOAs) have been proposed to address dynamic multi-objective optimization problems (DMOPs). Most existing DMOAs treat all decision variables uniformly and respond to them in an identical manner. This paper proposes a dynamic multi-objective optimization algorithm based on the classification response of decision variables (CRDV-DMO). Firstly, CRDV-DMO categorizes the decision variables into convergence variables and diversity variables. Different decision variables adopt distinct response strategies. The response strategy of diversity variable (RSDV) uses Latin hypercube sampling to generate the diversity variables of the new environment. For each dimensional convergence variable, the response strategy of convergence variable (RSCV) first evaluates whether the basic center prediction strategy (CPS) yields positive feedback or negative feedback, further determining the predictability of that dimensional convergence variable. RSCV then decides to either use the basic CPS to generate the convergence variable for that dimension or to retain that dimensional convergence variable from the current environment, based on the predictability of that dimensional convergence variable. The proposed algorithm is extensively studied through comparison with several advanced DMOAs, demonstrating its effectiveness in dealing with the benchmark DMOPs and the parameter-tuning problem of the PID controller on a dynamic system.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"691 ","pages":"Article 121611"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic multi-objective optimization based on classification response of decision variables\",\"authors\":\"Jianxia Li,&nbsp;Ruochen Liu,&nbsp;Ruinan Wang\",\"doi\":\"10.1016/j.ins.2024.121611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In recent years, many dynamic multi-objective optimization algorithms (DMOAs) have been proposed to address dynamic multi-objective optimization problems (DMOPs). Most existing DMOAs treat all decision variables uniformly and respond to them in an identical manner. This paper proposes a dynamic multi-objective optimization algorithm based on the classification response of decision variables (CRDV-DMO). Firstly, CRDV-DMO categorizes the decision variables into convergence variables and diversity variables. Different decision variables adopt distinct response strategies. The response strategy of diversity variable (RSDV) uses Latin hypercube sampling to generate the diversity variables of the new environment. For each dimensional convergence variable, the response strategy of convergence variable (RSCV) first evaluates whether the basic center prediction strategy (CPS) yields positive feedback or negative feedback, further determining the predictability of that dimensional convergence variable. RSCV then decides to either use the basic CPS to generate the convergence variable for that dimension or to retain that dimensional convergence variable from the current environment, based on the predictability of that dimensional convergence variable. The proposed algorithm is extensively studied through comparison with several advanced DMOAs, demonstrating its effectiveness in dealing with the benchmark DMOPs and the parameter-tuning problem of the PID controller on a dynamic system.</div></div>\",\"PeriodicalId\":51063,\"journal\":{\"name\":\"Information Sciences\",\"volume\":\"691 \",\"pages\":\"Article 121611\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020025524015251\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524015251","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们提出了许多动态多目标优化算法(DMOA)来解决动态多目标优化问题(DMOPs)。现有的多目标优化算法大多统一处理所有决策变量,并以相同的方式对其做出响应。本文提出了一种基于决策变量分类响应的动态多目标优化算法(CRDV-DMO)。首先,CRDV-DMO 将决策变量分为收敛变量和多样性变量。不同的决策变量采用不同的响应策略。多样性变量的响应策略(RSDV)使用拉丁超立方采样生成新环境的多样性变量。对于每个维度收敛变量,收敛变量响应策略(RSCV)首先评估基本中心预测策略(CPS)产生的是正反馈还是负反馈,进一步确定该维度收敛变量的可预测性。然后,RSCV 根据该维度收敛变量的可预测性,决定是使用基本 CPS 生成该维度的收敛变量,还是保留当前环境中的该维度收敛变量。通过与几种先进的 DMOA 进行比较,对所提出的算法进行了广泛研究,证明了该算法在处理基准 DMOP 和动态系统 PID 控制器的参数调整问题时的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic multi-objective optimization based on classification response of decision variables
In recent years, many dynamic multi-objective optimization algorithms (DMOAs) have been proposed to address dynamic multi-objective optimization problems (DMOPs). Most existing DMOAs treat all decision variables uniformly and respond to them in an identical manner. This paper proposes a dynamic multi-objective optimization algorithm based on the classification response of decision variables (CRDV-DMO). Firstly, CRDV-DMO categorizes the decision variables into convergence variables and diversity variables. Different decision variables adopt distinct response strategies. The response strategy of diversity variable (RSDV) uses Latin hypercube sampling to generate the diversity variables of the new environment. For each dimensional convergence variable, the response strategy of convergence variable (RSCV) first evaluates whether the basic center prediction strategy (CPS) yields positive feedback or negative feedback, further determining the predictability of that dimensional convergence variable. RSCV then decides to either use the basic CPS to generate the convergence variable for that dimension or to retain that dimensional convergence variable from the current environment, based on the predictability of that dimensional convergence variable. The proposed algorithm is extensively studied through comparison with several advanced DMOAs, demonstrating its effectiveness in dealing with the benchmark DMOPs and the parameter-tuning problem of the PID controller on a dynamic system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信