Zhengqing Liu , Peipei Ma , Yong Jiang , Fuhua Cao , Yong Zhang , Chunhui Liu
{"title":"沿共同习性面{111}的纳米相之间的结构相关性及其对跨界铝合金设计的影响","authors":"Zhengqing Liu , Peipei Ma , Yong Jiang , Fuhua Cao , Yong Zhang , Chunhui Liu","doi":"10.1016/j.actamat.2024.120535","DOIUrl":null,"url":null,"abstract":"<div><div>Ω, T<sub>1</sub>, Y, η' and η nano-phases in different series Al alloys are known to all precipitate along the major slip planes {111}<sub>Al</sub>. Their precipitation in multi-element cross-over Al alloys could thus be very intricate. In this work, atomic resolution HAADF-STEM and first-principles calculations were combined to comprehensively investigate their atomic structures and energetics in a set of model Al alloys. Our results revealed that they all tend to initially form a 2D layered structure consisting of an isostructural (Al,Cu) O-unit along the {111}, and that their further evolution sensitively depends on alloy composition. Alloying with Mg and/or Ag stabilizes the O-units to form a single-layer Ω (SL-Ω or Ω') in Al-Cu-Mg(-Ag) alloys. Alloying with Li stabilizes O-units to form SL-T<sub>1</sub> in Al-Cu-Li alloys. Alloying with Mg and Zn stabilizes O-units to form SL-Y in Al-Zn-Mg-Cu alloys. For cross-over Al alloys with a low Mg+Zn and low Li content, O-units would grow into O-O pairs to induce the SL-Ω (Ω') → multi-layer (ML)-Ω transformation. Increasing the Li content helps SL-T<sub>1</sub> grow continuously or transform into ML-T<sub>1</sub> with an O-O'-O stacking. Both mechanisms take actions to suppress ML-Ω. For cross-over Al alloys with high Mg+Zn content, O-units grow into O-R pairs and further into R-R<sup>−1</sup> pairs, inducing the transformation of SL-Ω/T<sub>1</sub>/Y → η' → η in strong preference over Ω and T<sub>1</sub> in Al-Zn-Mg-Cu(-Ag)(-Li) alloys. These results can fundamentally explain diverse experimental observations and provide many profound perspectives on the competitive precipitation in cross-over Al alloys.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"283 ","pages":"Article 120535"},"PeriodicalIF":8.3000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural relevance among nano-phases along the common habit planes {111} and its implications for the design of cross-over Al alloys\",\"authors\":\"Zhengqing Liu , Peipei Ma , Yong Jiang , Fuhua Cao , Yong Zhang , Chunhui Liu\",\"doi\":\"10.1016/j.actamat.2024.120535\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ω, T<sub>1</sub>, Y, η' and η nano-phases in different series Al alloys are known to all precipitate along the major slip planes {111}<sub>Al</sub>. Their precipitation in multi-element cross-over Al alloys could thus be very intricate. In this work, atomic resolution HAADF-STEM and first-principles calculations were combined to comprehensively investigate their atomic structures and energetics in a set of model Al alloys. Our results revealed that they all tend to initially form a 2D layered structure consisting of an isostructural (Al,Cu) O-unit along the {111}, and that their further evolution sensitively depends on alloy composition. Alloying with Mg and/or Ag stabilizes the O-units to form a single-layer Ω (SL-Ω or Ω') in Al-Cu-Mg(-Ag) alloys. Alloying with Li stabilizes O-units to form SL-T<sub>1</sub> in Al-Cu-Li alloys. Alloying with Mg and Zn stabilizes O-units to form SL-Y in Al-Zn-Mg-Cu alloys. For cross-over Al alloys with a low Mg+Zn and low Li content, O-units would grow into O-O pairs to induce the SL-Ω (Ω') → multi-layer (ML)-Ω transformation. Increasing the Li content helps SL-T<sub>1</sub> grow continuously or transform into ML-T<sub>1</sub> with an O-O'-O stacking. Both mechanisms take actions to suppress ML-Ω. For cross-over Al alloys with high Mg+Zn content, O-units grow into O-R pairs and further into R-R<sup>−1</sup> pairs, inducing the transformation of SL-Ω/T<sub>1</sub>/Y → η' → η in strong preference over Ω and T<sub>1</sub> in Al-Zn-Mg-Cu(-Ag)(-Li) alloys. These results can fundamentally explain diverse experimental observations and provide many profound perspectives on the competitive precipitation in cross-over Al alloys.</div></div>\",\"PeriodicalId\":238,\"journal\":{\"name\":\"Acta Materialia\",\"volume\":\"283 \",\"pages\":\"Article 120535\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135964542400884X\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135964542400884X","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Structural relevance among nano-phases along the common habit planes {111} and its implications for the design of cross-over Al alloys
Ω, T1, Y, η' and η nano-phases in different series Al alloys are known to all precipitate along the major slip planes {111}Al. Their precipitation in multi-element cross-over Al alloys could thus be very intricate. In this work, atomic resolution HAADF-STEM and first-principles calculations were combined to comprehensively investigate their atomic structures and energetics in a set of model Al alloys. Our results revealed that they all tend to initially form a 2D layered structure consisting of an isostructural (Al,Cu) O-unit along the {111}, and that their further evolution sensitively depends on alloy composition. Alloying with Mg and/or Ag stabilizes the O-units to form a single-layer Ω (SL-Ω or Ω') in Al-Cu-Mg(-Ag) alloys. Alloying with Li stabilizes O-units to form SL-T1 in Al-Cu-Li alloys. Alloying with Mg and Zn stabilizes O-units to form SL-Y in Al-Zn-Mg-Cu alloys. For cross-over Al alloys with a low Mg+Zn and low Li content, O-units would grow into O-O pairs to induce the SL-Ω (Ω') → multi-layer (ML)-Ω transformation. Increasing the Li content helps SL-T1 grow continuously or transform into ML-T1 with an O-O'-O stacking. Both mechanisms take actions to suppress ML-Ω. For cross-over Al alloys with high Mg+Zn content, O-units grow into O-R pairs and further into R-R−1 pairs, inducing the transformation of SL-Ω/T1/Y → η' → η in strong preference over Ω and T1 in Al-Zn-Mg-Cu(-Ag)(-Li) alloys. These results can fundamentally explain diverse experimental observations and provide many profound perspectives on the competitive precipitation in cross-over Al alloys.
期刊介绍:
Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.