Zhigang Wang , Ye Deng , Yu Dong , Jürgen Kurths , Jun Wu
{"title":"基于排序聚合的空间网络分解","authors":"Zhigang Wang , Ye Deng , Yu Dong , Jürgen Kurths , Jun Wu","doi":"10.1016/j.ipm.2024.103955","DOIUrl":null,"url":null,"abstract":"<div><div>Disintegrating harmful networks presents a significant challenge, especially in spatial networks where both topological and geospatial features must be considered. Existing methods that rely on a single metric often fail to capture the full complexity of such networks. To address these limitations, we propose a novel ranking aggregation-based algorithm for spatial network disintegration. Our approach integrates multiple region centrality metrics, providing a comprehensive evaluation of region importance. The algorithm operates in two stages: first, multiple rankings based on different centrality metrics are aggregated into a composite ranking to refine the candidate regions for disintegration. In the second stage, an exact target enumeration method is applied within this candidate set to determine the optimal combination of regions that maximizes disintegration impact. This interconnected approach effectively combines ranking aggregation with targeted enumeration to ensure both efficiency and accuracy. Extensive experiments are conducted on synthetic and real-world spatial networks of different network configurations. The results demonstrate that our method consistently achieves superior disintegration performance compared to traditional approaches, effectively addressing the challenges associated with spatial network disintegration. This study provides a contribution to understanding and improving spatial network disintegration strategies by leveraging a comprehensive, multi-criteria approach.</div></div>","PeriodicalId":50365,"journal":{"name":"Information Processing & Management","volume":"62 1","pages":"Article 103955"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial network disintegration based on ranking aggregation\",\"authors\":\"Zhigang Wang , Ye Deng , Yu Dong , Jürgen Kurths , Jun Wu\",\"doi\":\"10.1016/j.ipm.2024.103955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Disintegrating harmful networks presents a significant challenge, especially in spatial networks where both topological and geospatial features must be considered. Existing methods that rely on a single metric often fail to capture the full complexity of such networks. To address these limitations, we propose a novel ranking aggregation-based algorithm for spatial network disintegration. Our approach integrates multiple region centrality metrics, providing a comprehensive evaluation of region importance. The algorithm operates in two stages: first, multiple rankings based on different centrality metrics are aggregated into a composite ranking to refine the candidate regions for disintegration. In the second stage, an exact target enumeration method is applied within this candidate set to determine the optimal combination of regions that maximizes disintegration impact. This interconnected approach effectively combines ranking aggregation with targeted enumeration to ensure both efficiency and accuracy. Extensive experiments are conducted on synthetic and real-world spatial networks of different network configurations. The results demonstrate that our method consistently achieves superior disintegration performance compared to traditional approaches, effectively addressing the challenges associated with spatial network disintegration. This study provides a contribution to understanding and improving spatial network disintegration strategies by leveraging a comprehensive, multi-criteria approach.</div></div>\",\"PeriodicalId\":50365,\"journal\":{\"name\":\"Information Processing & Management\",\"volume\":\"62 1\",\"pages\":\"Article 103955\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Processing & Management\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306457324003145\",\"RegionNum\":1,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Processing & Management","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306457324003145","RegionNum":1,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Spatial network disintegration based on ranking aggregation
Disintegrating harmful networks presents a significant challenge, especially in spatial networks where both topological and geospatial features must be considered. Existing methods that rely on a single metric often fail to capture the full complexity of such networks. To address these limitations, we propose a novel ranking aggregation-based algorithm for spatial network disintegration. Our approach integrates multiple region centrality metrics, providing a comprehensive evaluation of region importance. The algorithm operates in two stages: first, multiple rankings based on different centrality metrics are aggregated into a composite ranking to refine the candidate regions for disintegration. In the second stage, an exact target enumeration method is applied within this candidate set to determine the optimal combination of regions that maximizes disintegration impact. This interconnected approach effectively combines ranking aggregation with targeted enumeration to ensure both efficiency and accuracy. Extensive experiments are conducted on synthetic and real-world spatial networks of different network configurations. The results demonstrate that our method consistently achieves superior disintegration performance compared to traditional approaches, effectively addressing the challenges associated with spatial network disintegration. This study provides a contribution to understanding and improving spatial network disintegration strategies by leveraging a comprehensive, multi-criteria approach.
期刊介绍:
Information Processing and Management is dedicated to publishing cutting-edge original research at the convergence of computing and information science. Our scope encompasses theory, methods, and applications across various domains, including advertising, business, health, information science, information technology marketing, and social computing.
We aim to cater to the interests of both primary researchers and practitioners by offering an effective platform for the timely dissemination of advanced and topical issues in this interdisciplinary field. The journal places particular emphasis on original research articles, research survey articles, research method articles, and articles addressing critical applications of research. Join us in advancing knowledge and innovation at the intersection of computing and information science.