Zhuo-Hao Jiao , Shuo Sun , Hua Li , Xiao-Na Gao , Zi-Qian Li , Yu-Heng Liu , Yan Fu , Lei Nie , Lei Wang
{"title":"在温和条件下催化二氧化碳转化为噁唑烷酮的高效桨轮铜簇基金属有机框架","authors":"Zhuo-Hao Jiao , Shuo Sun , Hua Li , Xiao-Na Gao , Zi-Qian Li , Yu-Heng Liu , Yan Fu , Lei Nie , Lei Wang","doi":"10.1016/j.molstruc.2024.140607","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient utilization of CO<sub>2</sub> and its conversion into high-value-added products contribute to mitigating environmental issues such as the greenhouse effect. Among these methods, the carboxylation cyclization of CO<sub>2</sub> with propargylic amine represents a green and atom-economical approach. Developing cost-effective catalyst that can promote this reaction under mild condition is desirable but challenging. Herein, a unique two-dimensional (2D) metal–organic framework (MOF) {[Cu(QCA)<sub>2</sub>]∙0.5DMF∙0.5H<sub>2</sub>O}<em><sub>n</sub></em> (<strong>1</strong>) (QCA =6-quinolinecarboxylic acid, DMF = <em>N</em>,N-dimethylformamide) have been synthesized and thoroughly characterized. Compound <strong>1</strong> was constructed from paddle-wheel dinuclear copper clusters [Cu<sub>2</sub>(COO)<sub>4</sub>] and carboxylate ligands, presenting a two-dimensional framework with new topology. Stability tests indicate that compound <strong>1</strong> undergoes reversible structural changes in different solvents and exhibits good thermal stability. <strong>1</strong> as heterogeneous catalyst enabled the transformation of CO<sub>2</sub> and propargylic amine into oxazolidinones under mild conditions with broad substrate generality. In addition, <strong>1</strong> could maintain its catalytic performance with five continuous reactions. This work presents an infrequent example of a 2D noble metal free MOF-based catalyst that shows high catalytic efficiency under mild conditions.</div></div>","PeriodicalId":16414,"journal":{"name":"Journal of Molecular Structure","volume":"1322 ","pages":"Article 140607"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient paddle-wheel copper cluster-based metal-organic framework for catalytic conversion of CO2 to oxazolidinones under mild conditions\",\"authors\":\"Zhuo-Hao Jiao , Shuo Sun , Hua Li , Xiao-Na Gao , Zi-Qian Li , Yu-Heng Liu , Yan Fu , Lei Nie , Lei Wang\",\"doi\":\"10.1016/j.molstruc.2024.140607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Efficient utilization of CO<sub>2</sub> and its conversion into high-value-added products contribute to mitigating environmental issues such as the greenhouse effect. Among these methods, the carboxylation cyclization of CO<sub>2</sub> with propargylic amine represents a green and atom-economical approach. Developing cost-effective catalyst that can promote this reaction under mild condition is desirable but challenging. Herein, a unique two-dimensional (2D) metal–organic framework (MOF) {[Cu(QCA)<sub>2</sub>]∙0.5DMF∙0.5H<sub>2</sub>O}<em><sub>n</sub></em> (<strong>1</strong>) (QCA =6-quinolinecarboxylic acid, DMF = <em>N</em>,N-dimethylformamide) have been synthesized and thoroughly characterized. Compound <strong>1</strong> was constructed from paddle-wheel dinuclear copper clusters [Cu<sub>2</sub>(COO)<sub>4</sub>] and carboxylate ligands, presenting a two-dimensional framework with new topology. Stability tests indicate that compound <strong>1</strong> undergoes reversible structural changes in different solvents and exhibits good thermal stability. <strong>1</strong> as heterogeneous catalyst enabled the transformation of CO<sub>2</sub> and propargylic amine into oxazolidinones under mild conditions with broad substrate generality. In addition, <strong>1</strong> could maintain its catalytic performance with five continuous reactions. This work presents an infrequent example of a 2D noble metal free MOF-based catalyst that shows high catalytic efficiency under mild conditions.</div></div>\",\"PeriodicalId\":16414,\"journal\":{\"name\":\"Journal of Molecular Structure\",\"volume\":\"1322 \",\"pages\":\"Article 140607\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Structure\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022286024031156\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Structure","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022286024031156","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Efficient paddle-wheel copper cluster-based metal-organic framework for catalytic conversion of CO2 to oxazolidinones under mild conditions
Efficient utilization of CO2 and its conversion into high-value-added products contribute to mitigating environmental issues such as the greenhouse effect. Among these methods, the carboxylation cyclization of CO2 with propargylic amine represents a green and atom-economical approach. Developing cost-effective catalyst that can promote this reaction under mild condition is desirable but challenging. Herein, a unique two-dimensional (2D) metal–organic framework (MOF) {[Cu(QCA)2]∙0.5DMF∙0.5H2O}n (1) (QCA =6-quinolinecarboxylic acid, DMF = N,N-dimethylformamide) have been synthesized and thoroughly characterized. Compound 1 was constructed from paddle-wheel dinuclear copper clusters [Cu2(COO)4] and carboxylate ligands, presenting a two-dimensional framework with new topology. Stability tests indicate that compound 1 undergoes reversible structural changes in different solvents and exhibits good thermal stability. 1 as heterogeneous catalyst enabled the transformation of CO2 and propargylic amine into oxazolidinones under mild conditions with broad substrate generality. In addition, 1 could maintain its catalytic performance with five continuous reactions. This work presents an infrequent example of a 2D noble metal free MOF-based catalyst that shows high catalytic efficiency under mild conditions.
期刊介绍:
The Journal of Molecular Structure is dedicated to the publication of full-length articles and review papers, providing important new structural information on all types of chemical species including:
• Stable and unstable molecules in all types of environments (vapour, molecular beam, liquid, solution, liquid crystal, solid state, matrix-isolated, surface-absorbed etc.)
• Chemical intermediates
• Molecules in excited states
• Biological molecules
• Polymers.
The methods used may include any combination of spectroscopic and non-spectroscopic techniques, for example:
• Infrared spectroscopy (mid, far, near)
• Raman spectroscopy and non-linear Raman methods (CARS, etc.)
• Electronic absorption spectroscopy
• Optical rotatory dispersion and circular dichroism
• Fluorescence and phosphorescence techniques
• Electron spectroscopies (PES, XPS), EXAFS, etc.
• Microwave spectroscopy
• Electron diffraction
• NMR and ESR spectroscopies
• Mössbauer spectroscopy
• X-ray crystallography
• Charge Density Analyses
• Computational Studies (supplementing experimental methods)
We encourage publications combining theoretical and experimental approaches. The structural insights gained by the studies should be correlated with the properties, activity and/ or reactivity of the molecule under investigation and the relevance of this molecule and its implications should be discussed.