通过快速傅立叶变换模拟六边形磁性材料中的退磁场

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Teng Yang , Qing Tang , Tao Lin , Jian Han , Ben Xu
{"title":"通过快速傅立叶变换模拟六边形磁性材料中的退磁场","authors":"Teng Yang ,&nbsp;Qing Tang ,&nbsp;Tao Lin ,&nbsp;Jian Han ,&nbsp;Ben Xu","doi":"10.1016/j.commatsci.2024.113497","DOIUrl":null,"url":null,"abstract":"<div><div>Two-dimensional van der Waals (vdW) magnetic materials with hexagonal structures exhibit exceptional potential for spintronics applications due to their unique magnetic properties. However, the accurate atomistic simulation of the demagnetization field in large hexagonal systems remains a challenge, as traditional Fast Fourier Transform (FFT) methods are limited to orthogonal lattices. In this study, we present a novel preprocessing method for hexagonal lattices to allow efficient computation of long-range demagnetization field by FFT acceleration. Through Atomistic Spin Dynamics simulations on layered CrI<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, we reveal the significant impact of the demagnetization field on non-collinear spin textures, including the formation of Néel domain walls and the stability of spin vortices. This work provides new insights into the complex magnetic dynamics of 2D vdW materials at the atomistic scale.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113497"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demagnetization field simulation in hexagonal magnetic materials via Fast Fourier Transform\",\"authors\":\"Teng Yang ,&nbsp;Qing Tang ,&nbsp;Tao Lin ,&nbsp;Jian Han ,&nbsp;Ben Xu\",\"doi\":\"10.1016/j.commatsci.2024.113497\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Two-dimensional van der Waals (vdW) magnetic materials with hexagonal structures exhibit exceptional potential for spintronics applications due to their unique magnetic properties. However, the accurate atomistic simulation of the demagnetization field in large hexagonal systems remains a challenge, as traditional Fast Fourier Transform (FFT) methods are limited to orthogonal lattices. In this study, we present a novel preprocessing method for hexagonal lattices to allow efficient computation of long-range demagnetization field by FFT acceleration. Through Atomistic Spin Dynamics simulations on layered CrI<span><math><msub><mrow></mrow><mrow><mn>3</mn></mrow></msub></math></span>, we reveal the significant impact of the demagnetization field on non-collinear spin textures, including the formation of Néel domain walls and the stability of spin vortices. This work provides new insights into the complex magnetic dynamics of 2D vdW materials at the atomistic scale.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"247 \",\"pages\":\"Article 113497\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624007183\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007183","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有六边形结构的二维范德瓦耳斯(vdW)磁性材料因其独特的磁性能而在自旋电子学应用中展现出非凡的潜力。然而,由于传统的快速傅立叶变换 (FFT) 方法仅限于正交晶格,因此在大型六边形系统中对去磁场进行精确的原子模拟仍然是一项挑战。在本研究中,我们提出了一种新颖的六边形晶格预处理方法,通过 FFT 加速来高效计算长程去磁场。通过对层状 CrI3 进行原子自旋动力学模拟,我们揭示了去磁场对非共线自旋纹理的重大影响,包括奈尔畴墙的形成和自旋漩涡的稳定性。这项工作为原子尺度上二维 vdW 材料的复杂磁动力学提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demagnetization field simulation in hexagonal magnetic materials via Fast Fourier Transform
Two-dimensional van der Waals (vdW) magnetic materials with hexagonal structures exhibit exceptional potential for spintronics applications due to their unique magnetic properties. However, the accurate atomistic simulation of the demagnetization field in large hexagonal systems remains a challenge, as traditional Fast Fourier Transform (FFT) methods are limited to orthogonal lattices. In this study, we present a novel preprocessing method for hexagonal lattices to allow efficient computation of long-range demagnetization field by FFT acceleration. Through Atomistic Spin Dynamics simulations on layered CrI3, we reveal the significant impact of the demagnetization field on non-collinear spin textures, including the formation of Néel domain walls and the stability of spin vortices. This work provides new insights into the complex magnetic dynamics of 2D vdW materials at the atomistic scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信