{"title":"点缺陷对立方砷化硼浅掺杂的影响:第一原理研究","authors":"Shuxiang Zhou , Zilong Hua , Kaustubh K. Bawane , Hao Zhou , Tianli Feng","doi":"10.1016/j.commatsci.2024.113483","DOIUrl":null,"url":null,"abstract":"<div><div>Cubic boron arsenide (BAs) stands out as a promising material for advanced electronics, thanks to its exceptional thermal conductivity and ambipolar mobility. However, effective control of p- and n-type doping in BAs poses a significant challenge, mostly as a result of the influence of defects. In the present study, we employed density functional theory (DFT) to explore the impacts of the common point defects and impurities on p-type doping of Be<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span> and Si<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, and on n-type doping of Si<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span> and Se<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>. We found that the most favorable point defects formed by C, O, and Si are C<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, O<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, Si<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, C<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>Si<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span>, and O<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span>Si<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, which have formation energies of less than <span><math><mrow><mn>1</mn><mo>.</mo><mn>5</mn><mspace></mspace><mi>eV</mi></mrow></math></span>. While the O impurity detrimentally affects both p- and n-type dopings, C and Si impurities are harmful for n-type dopings, making n-type doping a potential challenge. Interestingly, the antisite defect pair As<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span>B<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span> benefits both p- and n-type doping. The doping limitation analysis presented in this study can potentially pave the way for strategic development in the area of BAs-based electronics.</div></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":"247 ","pages":"Article 113483"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impacts of point defects on shallow doping in cubic boron arsenide: A first principles study\",\"authors\":\"Shuxiang Zhou , Zilong Hua , Kaustubh K. Bawane , Hao Zhou , Tianli Feng\",\"doi\":\"10.1016/j.commatsci.2024.113483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cubic boron arsenide (BAs) stands out as a promising material for advanced electronics, thanks to its exceptional thermal conductivity and ambipolar mobility. However, effective control of p- and n-type doping in BAs poses a significant challenge, mostly as a result of the influence of defects. In the present study, we employed density functional theory (DFT) to explore the impacts of the common point defects and impurities on p-type doping of Be<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span> and Si<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, and on n-type doping of Si<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span> and Se<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>. We found that the most favorable point defects formed by C, O, and Si are C<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, O<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span>O<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, Si<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, C<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>Si<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span>, and O<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span>Si<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span>, which have formation energies of less than <span><math><mrow><mn>1</mn><mo>.</mo><mn>5</mn><mspace></mspace><mi>eV</mi></mrow></math></span>. While the O impurity detrimentally affects both p- and n-type dopings, C and Si impurities are harmful for n-type dopings, making n-type doping a potential challenge. Interestingly, the antisite defect pair As<span><math><msub><mrow></mrow><mrow><mtext>B</mtext></mrow></msub></math></span>B<span><math><msub><mrow></mrow><mrow><mtext>As</mtext></mrow></msub></math></span> benefits both p- and n-type doping. The doping limitation analysis presented in this study can potentially pave the way for strategic development in the area of BAs-based electronics.</div></div>\",\"PeriodicalId\":10650,\"journal\":{\"name\":\"Computational Materials Science\",\"volume\":\"247 \",\"pages\":\"Article 113483\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927025624007043\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624007043","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
立方砷化硼(BAs)具有优异的热导率和极性迁移率,是一种很有前途的先进电子材料。然而,有效控制砷化硼中的 p 型和 n 型掺杂是一项重大挑战,这主要是由于缺陷的影响。在本研究中,我们采用密度泛函理论(DFT)探讨了常见点缺陷和杂质对 BeB 和 SiAs 的 p 型掺杂以及 SiB 和 SeAs 的 n 型掺杂的影响。我们发现,由 C、O 和 Si 形成的最有利的点缺陷是 CAs、OBOAs、SiAs、CAsSiB 和 OBSiAs,它们的形成能量小于 1.5eV。O 杂质对 p 型和 n 型掺杂都有不利影响,而 C 和 Si 杂质则对 n 型掺杂有害,因此 n 型掺杂是一个潜在的挑战。有趣的是,反位缺陷对 AsBBAs 有利于 p 型和 n 型掺杂。本研究提出的掺杂限制分析有可能为基于 BAs 的电子学领域的战略发展铺平道路。
Impacts of point defects on shallow doping in cubic boron arsenide: A first principles study
Cubic boron arsenide (BAs) stands out as a promising material for advanced electronics, thanks to its exceptional thermal conductivity and ambipolar mobility. However, effective control of p- and n-type doping in BAs poses a significant challenge, mostly as a result of the influence of defects. In the present study, we employed density functional theory (DFT) to explore the impacts of the common point defects and impurities on p-type doping of Be and Si, and on n-type doping of Si and Se. We found that the most favorable point defects formed by C, O, and Si are C, OO, Si, CSi, and OSi, which have formation energies of less than . While the O impurity detrimentally affects both p- and n-type dopings, C and Si impurities are harmful for n-type dopings, making n-type doping a potential challenge. Interestingly, the antisite defect pair AsB benefits both p- and n-type doping. The doping limitation analysis presented in this study can potentially pave the way for strategic development in the area of BAs-based electronics.
期刊介绍:
The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.