Dan Pu , Kuangnan Fang , Wei Lan , Jihai Yu , Qingzhao Zhang
{"title":"低秩系数矩阵多变量时空模型","authors":"Dan Pu , Kuangnan Fang , Wei Lan , Jihai Yu , Qingzhao Zhang","doi":"10.1016/j.jeconom.2024.105897","DOIUrl":null,"url":null,"abstract":"<div><div>Multivariate spatiotemporal data arise frequently in practical applications, often involving complex dependencies across cross-sectional units, time points and multivariate variables. In the literature, few studies jointly model the dependence in three dimensions. To simultaneously model the cross-sectional, dynamic and cross-variable dependence, we propose a multivariate reduced-rank spatiotemporal model. By imposing the low-rank assumption on the spatial influence matrix, the proposed model achieves substantial dimension reduction and has a nice interpretation, especially for financial data. Due to the innate endogeneity, we propose the quasi-maximum likelihood estimator (QMLE) to estimate the unknown parameters. A ridge-type ratio estimator is also developed to determine the rank of the spatial influence matrix. We establish the asymptotic distribution of the QMLE and the rank selection consistency of the ridge-type ratio estimator. The proposed methodology is further illustrated via extensive simulation studies and two applications to a stock market dataset and an air pollution dataset.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"246 1","pages":"Article 105897"},"PeriodicalIF":9.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multivariate spatiotemporal models with low rank coefficient matrix\",\"authors\":\"Dan Pu , Kuangnan Fang , Wei Lan , Jihai Yu , Qingzhao Zhang\",\"doi\":\"10.1016/j.jeconom.2024.105897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multivariate spatiotemporal data arise frequently in practical applications, often involving complex dependencies across cross-sectional units, time points and multivariate variables. In the literature, few studies jointly model the dependence in three dimensions. To simultaneously model the cross-sectional, dynamic and cross-variable dependence, we propose a multivariate reduced-rank spatiotemporal model. By imposing the low-rank assumption on the spatial influence matrix, the proposed model achieves substantial dimension reduction and has a nice interpretation, especially for financial data. Due to the innate endogeneity, we propose the quasi-maximum likelihood estimator (QMLE) to estimate the unknown parameters. A ridge-type ratio estimator is also developed to determine the rank of the spatial influence matrix. We establish the asymptotic distribution of the QMLE and the rank selection consistency of the ridge-type ratio estimator. The proposed methodology is further illustrated via extensive simulation studies and two applications to a stock market dataset and an air pollution dataset.</div></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"246 1\",\"pages\":\"Article 105897\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407624002483\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624002483","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Multivariate spatiotemporal models with low rank coefficient matrix
Multivariate spatiotemporal data arise frequently in practical applications, often involving complex dependencies across cross-sectional units, time points and multivariate variables. In the literature, few studies jointly model the dependence in three dimensions. To simultaneously model the cross-sectional, dynamic and cross-variable dependence, we propose a multivariate reduced-rank spatiotemporal model. By imposing the low-rank assumption on the spatial influence matrix, the proposed model achieves substantial dimension reduction and has a nice interpretation, especially for financial data. Due to the innate endogeneity, we propose the quasi-maximum likelihood estimator (QMLE) to estimate the unknown parameters. A ridge-type ratio estimator is also developed to determine the rank of the spatial influence matrix. We establish the asymptotic distribution of the QMLE and the rank selection consistency of the ridge-type ratio estimator. The proposed methodology is further illustrated via extensive simulation studies and two applications to a stock market dataset and an air pollution dataset.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.