{"title":"关于具有卡片数量限制的 MAX-SAT","authors":"Fahad Panolan , Hannane Yaghoubizade","doi":"10.1016/j.tcs.2024.114971","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the weighted MAX–SAT problem with an additional constraint that <strong>at most</strong> <em>k</em> variables can be set to true. We call this problem <em>k</em><span>–WMAX–SAT</span>. This problem admits a <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>e</mi></mrow></mfrac><mo>)</mo></math></span>-factor approximation algorithm in polynomial time [Sviridenko, Algorithmica (2001)] and it is proved that there is no <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>e</mi></mrow></mfrac><mo>+</mo><mi>ϵ</mi><mo>)</mo></math></span>-factor approximation algorithm in <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>⋅</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>o</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> time for <span>Maximum Coverage</span>, the unweighted monotone version of <em>k</em><span>–WMAX–SAT</span> [Manurangsi, SODA 2020]. Therefore, we study two restricted versions of the problem in the realm of parameterized complexity.<ul><li><span>1.</span><span><div>When the input is an unweighted 2–CNF formula (the problem is called <em>k</em><span>–MAX–2SAT</span>), we design an efficient polynomial-size approximate kernelization scheme. That is, we design a polynomial-time algorithm that given a 2–CNF formula <em>ψ</em> and <span><math><mi>ϵ</mi><mo>></mo><mn>0</mn></math></span>, compresses the input instance to a 2–CNF formula <span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mo>⋆</mo></mrow></msup></math></span> such that any <em>c</em>-approximate solution of <span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mo>⋆</mo></mrow></msup></math></span> can be converted to a <span><math><mi>c</mi><mo>(</mo><mn>1</mn><mo>−</mo><mi>ϵ</mi><mo>)</mo></math></span>-approximate solution of <em>ψ</em> in polynomial time.</div></span></li><li><span>2.</span><span><div>When the input is a planar CNF formula, i.e., the variable-clause incidence graph is a planar graph, we show the following results:<ul><li><span>•</span><span><div>There is an FPT algorithm for <em>k</em><span>–WMAX–SAT</span> on planar CNF formulas that runs in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>⋅</mo><mo>(</mo><mi>C</mi><mo>+</mo><mi>V</mi><mo>)</mo></math></span> time.</div></span></li><li><span>•</span><span><div>There is a polynomial-time approximation scheme for <em>k</em><span>–WMAX–SAT</span> on planar CNF formulas that runs in time <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ϵ</mi></mrow></mfrac><mo>)</mo></mrow></msup><mo>⋅</mo><mi>k</mi><mo>⋅</mo><mo>(</mo><mi>C</mi><mo>+</mo><mi>V</mi><mo>)</mo></math></span>.</div></span></li></ul> The above-mentioned <em>C</em> and <em>V</em> are the number of clauses and variables of the input formula respectively.</div></span></li></ul></div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1025 ","pages":"Article 114971"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On MAX–SAT with cardinality constraint\",\"authors\":\"Fahad Panolan , Hannane Yaghoubizade\",\"doi\":\"10.1016/j.tcs.2024.114971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the weighted MAX–SAT problem with an additional constraint that <strong>at most</strong> <em>k</em> variables can be set to true. We call this problem <em>k</em><span>–WMAX–SAT</span>. This problem admits a <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>e</mi></mrow></mfrac><mo>)</mo></math></span>-factor approximation algorithm in polynomial time [Sviridenko, Algorithmica (2001)] and it is proved that there is no <span><math><mo>(</mo><mn>1</mn><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>e</mi></mrow></mfrac><mo>+</mo><mi>ϵ</mi><mo>)</mo></math></span>-factor approximation algorithm in <span><math><mi>f</mi><mo>(</mo><mi>k</mi><mo>)</mo><mo>⋅</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>o</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup></math></span> time for <span>Maximum Coverage</span>, the unweighted monotone version of <em>k</em><span>–WMAX–SAT</span> [Manurangsi, SODA 2020]. Therefore, we study two restricted versions of the problem in the realm of parameterized complexity.<ul><li><span>1.</span><span><div>When the input is an unweighted 2–CNF formula (the problem is called <em>k</em><span>–MAX–2SAT</span>), we design an efficient polynomial-size approximate kernelization scheme. That is, we design a polynomial-time algorithm that given a 2–CNF formula <em>ψ</em> and <span><math><mi>ϵ</mi><mo>></mo><mn>0</mn></math></span>, compresses the input instance to a 2–CNF formula <span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mo>⋆</mo></mrow></msup></math></span> such that any <em>c</em>-approximate solution of <span><math><msup><mrow><mi>ψ</mi></mrow><mrow><mo>⋆</mo></mrow></msup></math></span> can be converted to a <span><math><mi>c</mi><mo>(</mo><mn>1</mn><mo>−</mo><mi>ϵ</mi><mo>)</mo></math></span>-approximate solution of <em>ψ</em> in polynomial time.</div></span></li><li><span>2.</span><span><div>When the input is a planar CNF formula, i.e., the variable-clause incidence graph is a planar graph, we show the following results:<ul><li><span>•</span><span><div>There is an FPT algorithm for <em>k</em><span>–WMAX–SAT</span> on planar CNF formulas that runs in <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mi>k</mi><mo>)</mo></mrow></msup><mo>⋅</mo><mo>(</mo><mi>C</mi><mo>+</mo><mi>V</mi><mo>)</mo></math></span> time.</div></span></li><li><span>•</span><span><div>There is a polynomial-time approximation scheme for <em>k</em><span>–WMAX–SAT</span> on planar CNF formulas that runs in time <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mo>(</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ϵ</mi></mrow></mfrac><mo>)</mo></mrow></msup><mo>⋅</mo><mi>k</mi><mo>⋅</mo><mo>(</mo><mi>C</mi><mo>+</mo><mi>V</mi><mo>)</mo></math></span>.</div></span></li></ul> The above-mentioned <em>C</em> and <em>V</em> are the number of clauses and variables of the input formula respectively.</div></span></li></ul></div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1025 \",\"pages\":\"Article 114971\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524005887\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005887","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
We consider the weighted MAX–SAT problem with an additional constraint that at mostk variables can be set to true. We call this problem k–WMAX–SAT. This problem admits a -factor approximation algorithm in polynomial time [Sviridenko, Algorithmica (2001)] and it is proved that there is no -factor approximation algorithm in time for Maximum Coverage, the unweighted monotone version of k–WMAX–SAT [Manurangsi, SODA 2020]. Therefore, we study two restricted versions of the problem in the realm of parameterized complexity.
1.
When the input is an unweighted 2–CNF formula (the problem is called k–MAX–2SAT), we design an efficient polynomial-size approximate kernelization scheme. That is, we design a polynomial-time algorithm that given a 2–CNF formula ψ and , compresses the input instance to a 2–CNF formula such that any c-approximate solution of can be converted to a -approximate solution of ψ in polynomial time.
2.
When the input is a planar CNF formula, i.e., the variable-clause incidence graph is a planar graph, we show the following results:
•
There is an FPT algorithm for k–WMAX–SAT on planar CNF formulas that runs in time.
•
There is a polynomial-time approximation scheme for k–WMAX–SAT on planar CNF formulas that runs in time .
The above-mentioned C and V are the number of clauses and variables of the input formula respectively.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.