{"title":"惠勒-德威特方程的精确解早期宇宙和当前宇宙","authors":"David Senjaya","doi":"10.1016/j.jheap.2024.11.007","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we present exact solutions to the Wheeler-DeWitt equation in two different scenarios: the early Universe, where the ordering parameter of kinetic energy is important, and the current Universe, where the ordering parameter effect is negligible. To make the exact solutions as general as possible, we incorporate as many different types of energy density as possible into the Hamiltonian, including baryonic and non-baryonic matter (dark matter), radiation, vacuum, and quintessence (dark energy). In the early Universe scenario, we obtain exact solutions in terms of the Biconfluent Heun functions, whereas in the current Universe, the exact solutions are given in terms of the Triconfluent Heun functions. Furthermore, by applying the polynomial conditions to each case, we obtain a constraint equation that supports the notion that the Wheeler-DeWitt equation can be viewed as an eigenvalue problem for the cosmological constant.</div></div>","PeriodicalId":54265,"journal":{"name":"Journal of High Energy Astrophysics","volume":"44 ","pages":"Pages 494-499"},"PeriodicalIF":10.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exact solution to the Wheeler-DeWitt equation: Early and current Universe\",\"authors\":\"David Senjaya\",\"doi\":\"10.1016/j.jheap.2024.11.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we present exact solutions to the Wheeler-DeWitt equation in two different scenarios: the early Universe, where the ordering parameter of kinetic energy is important, and the current Universe, where the ordering parameter effect is negligible. To make the exact solutions as general as possible, we incorporate as many different types of energy density as possible into the Hamiltonian, including baryonic and non-baryonic matter (dark matter), radiation, vacuum, and quintessence (dark energy). In the early Universe scenario, we obtain exact solutions in terms of the Biconfluent Heun functions, whereas in the current Universe, the exact solutions are given in terms of the Triconfluent Heun functions. Furthermore, by applying the polynomial conditions to each case, we obtain a constraint equation that supports the notion that the Wheeler-DeWitt equation can be viewed as an eigenvalue problem for the cosmological constant.</div></div>\",\"PeriodicalId\":54265,\"journal\":{\"name\":\"Journal of High Energy Astrophysics\",\"volume\":\"44 \",\"pages\":\"Pages 494-499\"},\"PeriodicalIF\":10.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Astrophysics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214404824001204\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214404824001204","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Exact solution to the Wheeler-DeWitt equation: Early and current Universe
In this paper, we present exact solutions to the Wheeler-DeWitt equation in two different scenarios: the early Universe, where the ordering parameter of kinetic energy is important, and the current Universe, where the ordering parameter effect is negligible. To make the exact solutions as general as possible, we incorporate as many different types of energy density as possible into the Hamiltonian, including baryonic and non-baryonic matter (dark matter), radiation, vacuum, and quintessence (dark energy). In the early Universe scenario, we obtain exact solutions in terms of the Biconfluent Heun functions, whereas in the current Universe, the exact solutions are given in terms of the Triconfluent Heun functions. Furthermore, by applying the polynomial conditions to each case, we obtain a constraint equation that supports the notion that the Wheeler-DeWitt equation can be viewed as an eigenvalue problem for the cosmological constant.
期刊介绍:
The journal welcomes manuscripts on theoretical models, simulations, and observations of highly energetic astrophysical objects both in our Galaxy and beyond. Among those, black holes at all scales, neutron stars, pulsars and their nebula, binaries, novae and supernovae, their remnants, active galaxies, and clusters are just a few examples. The journal will consider research across the whole electromagnetic spectrum, as well as research using various messengers, such as gravitational waves or neutrinos. Effects of high-energy phenomena on cosmology and star-formation, results from dedicated surveys expanding the knowledge of extreme environments, and astrophysical implications of dark matter are also welcomed topics.