{"title":"用场景近似最短路径问题","authors":"Adam Kasperski, Paweł Zieliński","doi":"10.1016/j.tcs.2024.114972","DOIUrl":null,"url":null,"abstract":"<div><div>This paper discusses the shortest path problem in a general directed graph with <em>n</em> nodes and <em>K</em> cost scenarios (objectives). In order to choose a solution, the min-max criterion is applied. The min-max version of the problem is hard to approximate within <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>ϵ</mi></mrow></msup><mo></mo><mi>K</mi><mo>)</mo></math></span> for any <span><math><mi>ϵ</mi><mo>></mo><mn>0</mn></math></span> unless NP<!--> <span><math><mo>⊆</mo><mtext>DTIME</mtext><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mtext>polylog</mtext><mspace></mspace><mi>n</mi></mrow></msup><mo>)</mo></math></span> even for arc series-parallel graphs and within <span><math><mi>Ω</mi><mo>(</mo><mi>log</mi><mo></mo><mi>n</mi><mo>/</mo><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> unless NP<!--> <span><math><mo>⊆</mo><mtext>ZPTIME</mtext><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>n</mi></mrow></msup><mo>)</mo></math></span> for acyclic graphs. The best approximation algorithm for the min-max shortest path problem in general graphs, known to date, has an approximation ratio of <em>K</em>. In this paper, an <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>)</mo></math></span> flow LP-based approximation algorithm for min-max shortest path in general graphs is constructed. It is also shown that the approximation ratio obtained is close to an integrality gap of the corresponding flow LP relaxation.</div></div>","PeriodicalId":49438,"journal":{"name":"Theoretical Computer Science","volume":"1025 ","pages":"Article 114972"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating the shortest path problem with scenarios\",\"authors\":\"Adam Kasperski, Paweł Zieliński\",\"doi\":\"10.1016/j.tcs.2024.114972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper discusses the shortest path problem in a general directed graph with <em>n</em> nodes and <em>K</em> cost scenarios (objectives). In order to choose a solution, the min-max criterion is applied. The min-max version of the problem is hard to approximate within <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mi>log</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>ϵ</mi></mrow></msup><mo></mo><mi>K</mi><mo>)</mo></math></span> for any <span><math><mi>ϵ</mi><mo>></mo><mn>0</mn></math></span> unless NP<!--> <span><math><mo>⊆</mo><mtext>DTIME</mtext><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mtext>polylog</mtext><mspace></mspace><mi>n</mi></mrow></msup><mo>)</mo></math></span> even for arc series-parallel graphs and within <span><math><mi>Ω</mi><mo>(</mo><mi>log</mi><mo></mo><mi>n</mi><mo>/</mo><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>n</mi><mo>)</mo></math></span> unless NP<!--> <span><math><mo>⊆</mo><mtext>ZPTIME</mtext><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mi>log</mi><mo></mo><mi>log</mi><mo></mo><mi>n</mi></mrow></msup><mo>)</mo></math></span> for acyclic graphs. The best approximation algorithm for the min-max shortest path problem in general graphs, known to date, has an approximation ratio of <em>K</em>. In this paper, an <span><math><mover><mrow><mi>O</mi></mrow><mrow><mo>˜</mo></mrow></mover><mo>(</mo><msqrt><mrow><mi>n</mi></mrow></msqrt><mo>)</mo></math></span> flow LP-based approximation algorithm for min-max shortest path in general graphs is constructed. It is also shown that the approximation ratio obtained is close to an integrality gap of the corresponding flow LP relaxation.</div></div>\",\"PeriodicalId\":49438,\"journal\":{\"name\":\"Theoretical Computer Science\",\"volume\":\"1025 \",\"pages\":\"Article 114972\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304397524005899\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Computer Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304397524005899","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
摘要
本文讨论的是一般有向图中的最短路径问题,该图有 n 个节点和 K 个成本方案(目标)。为了选择一个解,采用了最小-最大准则。对于任意ϵ>0,除非 NP ⊆DTIME(npolylogn),否则即使对于弧序列平行图,最小-最大版本的问题也很难在Ω(log1-ϵK)内逼近;对于非循环图,除非 NP ⊆ZPTIME(nloglogn),否则也很难在Ω(logn/loglogn)内逼近。本文构建了基于 O˜(n)流 LP 的一般图中最小最短路径的近似算法。研究还表明,所获得的近似率接近于相应流 LP 松弛的积分差距。
Approximating the shortest path problem with scenarios
This paper discusses the shortest path problem in a general directed graph with n nodes and K cost scenarios (objectives). In order to choose a solution, the min-max criterion is applied. The min-max version of the problem is hard to approximate within for any unless NP even for arc series-parallel graphs and within unless NP for acyclic graphs. The best approximation algorithm for the min-max shortest path problem in general graphs, known to date, has an approximation ratio of K. In this paper, an flow LP-based approximation algorithm for min-max shortest path in general graphs is constructed. It is also shown that the approximation ratio obtained is close to an integrality gap of the corresponding flow LP relaxation.
期刊介绍:
Theoretical Computer Science is mathematical and abstract in spirit, but it derives its motivation from practical and everyday computation. Its aim is to understand the nature of computation and, as a consequence of this understanding, provide more efficient methodologies. All papers introducing or studying mathematical, logic and formal concepts and methods are welcome, provided that their motivation is clearly drawn from the field of computing.