可逆电路的渐进优化合成

IF 0.8 4区 计算机科学 Q3 COMPUTER SCIENCE, THEORY & METHODS
Xian Wu, Lvzhou Li
{"title":"可逆电路的渐进优化合成","authors":"Xian Wu,&nbsp;Lvzhou Li","doi":"10.1016/j.ic.2024.105235","DOIUrl":null,"url":null,"abstract":"<div><div>Reversible circuits have been studied extensively and intensively, and have plenty of applications in various areas, such as digital signal processing, cryptography, and especially quantum computing. In 2003, the lower bound <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mi>n</mi><mo>/</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> for the synthesis of <em>n</em>-wire reversible circuits was proved. Whether this lower bound has a matching upper bound was listed as one of the future challenging open problems in the survey (Saeedi and Markov (2013) <span><span>[1]</span></span>). In this paper we propose an algorithm to implement an arbitrary <em>n</em>-wire reversible circuit with no more than <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mi>n</mi><mo>/</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> elementary gates, and thus close the open problem.</div></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"301 ","pages":"Article 105235"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotically optimal synthesis of reversible circuits\",\"authors\":\"Xian Wu,&nbsp;Lvzhou Li\",\"doi\":\"10.1016/j.ic.2024.105235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reversible circuits have been studied extensively and intensively, and have plenty of applications in various areas, such as digital signal processing, cryptography, and especially quantum computing. In 2003, the lower bound <span><math><mi>Ω</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mi>n</mi><mo>/</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> for the synthesis of <em>n</em>-wire reversible circuits was proved. Whether this lower bound has a matching upper bound was listed as one of the future challenging open problems in the survey (Saeedi and Markov (2013) <span><span>[1]</span></span>). In this paper we propose an algorithm to implement an arbitrary <em>n</em>-wire reversible circuit with no more than <span><math><mi>O</mi><mo>(</mo><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup><mi>n</mi><mo>/</mo><mi>log</mi><mo>⁡</mo><mi>n</mi><mo>)</mo></math></span> elementary gates, and thus close the open problem.</div></div>\",\"PeriodicalId\":54985,\"journal\":{\"name\":\"Information and Computation\",\"volume\":\"301 \",\"pages\":\"Article 105235\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0890540124001007\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540124001007","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

人们对可逆电路进行了广泛而深入的研究,在数字信号处理、密码学,特别是量子计算等各个领域都有大量应用。2003 年,人们证明了 n 线可逆电路合成的下界 Ω(2nn/logn)。这一下界是否有匹配的上界被列为调查报告中未来具有挑战性的开放问题之一(Saeedi 和 Markov (2013) [1])。在本文中,我们提出了一种用不超过 O(2nn/logn) 的基本门实现任意 n 线可逆电路的算法,从而解决了这个开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotically optimal synthesis of reversible circuits
Reversible circuits have been studied extensively and intensively, and have plenty of applications in various areas, such as digital signal processing, cryptography, and especially quantum computing. In 2003, the lower bound Ω(2nn/logn) for the synthesis of n-wire reversible circuits was proved. Whether this lower bound has a matching upper bound was listed as one of the future challenging open problems in the survey (Saeedi and Markov (2013) [1]). In this paper we propose an algorithm to implement an arbitrary n-wire reversible circuit with no more than O(2nn/logn) elementary gates, and thus close the open problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Computation
Information and Computation 工程技术-计算机:理论方法
CiteScore
2.30
自引率
0.00%
发文量
119
审稿时长
140 days
期刊介绍: Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as -Biological computation and computational biology- Computational complexity- Computer theorem-proving- Concurrency and distributed process theory- Cryptographic theory- Data base theory- Decision problems in logic- Design and analysis of algorithms- Discrete optimization and mathematical programming- Inductive inference and learning theory- Logic & constraint programming- Program verification & model checking- Probabilistic & Quantum computation- Semantics of programming languages- Symbolic computation, lambda calculus, and rewriting systems- Types and typechecking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信