用于智能可穿戴设备检测人体健康传导的深度学习模型

Q4 Engineering
Rathod Hiral Yashwantbhai , Haresh Dhanji Chande , Sachinkumar Harshadbhai Makwana , Payal Prajapati , Archana Gondalia , Pinesh Arvindbhai Darji
{"title":"用于智能可穿戴设备检测人体健康传导的深度学习模型","authors":"Rathod Hiral Yashwantbhai ,&nbsp;Haresh Dhanji Chande ,&nbsp;Sachinkumar Harshadbhai Makwana ,&nbsp;Payal Prajapati ,&nbsp;Archana Gondalia ,&nbsp;Pinesh Arvindbhai Darji","doi":"10.1016/j.measen.2024.101401","DOIUrl":null,"url":null,"abstract":"<div><div>With the proliferation of smart wearables, motion wristbands provide a wealth of data essential for comprehending the dynamic nature of health. However, outlier detection is typically necessary due to the presence of unknown outliers in their multidimensional activity data. Conventional approaches frequently result in incorrect object identification due to the curse of dimensionality. Using the Gaussian Mixture Generative Model (GMGM), we provide a method to identify outliers and address this problem. Training on raw data is done using a VariationalAutoencoder (VAE). While avoiding rebuilding mistakes, we want to achieve as many brief features as possible. To predict the likelihood that examples contain many types of data, a DBN will utilise feature extractions and latent distributions in the future. The model's robustness is enhanced by enhancing the VAE, deep learning components, and the GMM overall. When densities surpass the training level, the Gaussian Mixture Model identifies outliers. To achieve this, it makes educated guesses about the densities of each data point. Compared to the deep learning Autoencoding Gaussian Mixture Model (DAGMM), GMGM achieves a 5.5 % higher area under the curve (AUC) on the ODDS standard dataset. Experiments conducted on real datasets further demonstrate the efficacy of this strategy.</div></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"36 ","pages":"Article 101401"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning model for smart wearables device to detect human health conduction\",\"authors\":\"Rathod Hiral Yashwantbhai ,&nbsp;Haresh Dhanji Chande ,&nbsp;Sachinkumar Harshadbhai Makwana ,&nbsp;Payal Prajapati ,&nbsp;Archana Gondalia ,&nbsp;Pinesh Arvindbhai Darji\",\"doi\":\"10.1016/j.measen.2024.101401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the proliferation of smart wearables, motion wristbands provide a wealth of data essential for comprehending the dynamic nature of health. However, outlier detection is typically necessary due to the presence of unknown outliers in their multidimensional activity data. Conventional approaches frequently result in incorrect object identification due to the curse of dimensionality. Using the Gaussian Mixture Generative Model (GMGM), we provide a method to identify outliers and address this problem. Training on raw data is done using a VariationalAutoencoder (VAE). While avoiding rebuilding mistakes, we want to achieve as many brief features as possible. To predict the likelihood that examples contain many types of data, a DBN will utilise feature extractions and latent distributions in the future. The model's robustness is enhanced by enhancing the VAE, deep learning components, and the GMM overall. When densities surpass the training level, the Gaussian Mixture Model identifies outliers. To achieve this, it makes educated guesses about the densities of each data point. Compared to the deep learning Autoencoding Gaussian Mixture Model (DAGMM), GMGM achieves a 5.5 % higher area under the curve (AUC) on the ODDS standard dataset. Experiments conducted on real datasets further demonstrate the efficacy of this strategy.</div></div>\",\"PeriodicalId\":34311,\"journal\":{\"name\":\"Measurement Sensors\",\"volume\":\"36 \",\"pages\":\"Article 101401\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665917424003775\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665917424003775","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

随着智能可穿戴设备的普及,运动腕带提供了丰富的数据,这些数据对于理解健康的动态性质至关重要。然而,由于多维活动数据中存在未知离群值,离群值检测通常是必要的。由于维度诅咒,传统方法经常会导致错误的对象识别。我们利用高斯混合生成模型(GMGM)提供了一种识别离群值并解决这一问题的方法。我们使用变异自动编码器(VAE)对原始数据进行训练。在避免重建错误的同时,我们希望获得尽可能多的简要特征。为了预测示例包含多种类型数据的可能性,DBN 将在未来利用特征提取和潜在分布。通过增强 VAE、深度学习组件和 GMM 整体,可以提高模型的鲁棒性。当密度超过训练水平时,高斯混合模型会识别异常值。为此,它会对每个数据点的密度进行有根据的猜测。与深度学习自动编码高斯混合模型(DAGMM)相比,GMGM 在 ODDS 标准数据集上的曲线下面积(AUC)高出 5.5%。在真实数据集上进行的实验进一步证明了这一策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep learning model for smart wearables device to detect human health conduction
With the proliferation of smart wearables, motion wristbands provide a wealth of data essential for comprehending the dynamic nature of health. However, outlier detection is typically necessary due to the presence of unknown outliers in their multidimensional activity data. Conventional approaches frequently result in incorrect object identification due to the curse of dimensionality. Using the Gaussian Mixture Generative Model (GMGM), we provide a method to identify outliers and address this problem. Training on raw data is done using a VariationalAutoencoder (VAE). While avoiding rebuilding mistakes, we want to achieve as many brief features as possible. To predict the likelihood that examples contain many types of data, a DBN will utilise feature extractions and latent distributions in the future. The model's robustness is enhanced by enhancing the VAE, deep learning components, and the GMM overall. When densities surpass the training level, the Gaussian Mixture Model identifies outliers. To achieve this, it makes educated guesses about the densities of each data point. Compared to the deep learning Autoencoding Gaussian Mixture Model (DAGMM), GMGM achieves a 5.5 % higher area under the curve (AUC) on the ODDS standard dataset. Experiments conducted on real datasets further demonstrate the efficacy of this strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement Sensors
Measurement Sensors Engineering-Industrial and Manufacturing Engineering
CiteScore
3.10
自引率
0.00%
发文量
184
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信