Senthil Kumar Jagatheesaperumal , Ijaz Ahmad , Marko Höyhtyä , Suleman Khan , Andrei Gurtov
{"title":"认知无线电网络的深度学习框架:回顾与开放研究挑战","authors":"Senthil Kumar Jagatheesaperumal , Ijaz Ahmad , Marko Höyhtyä , Suleman Khan , Andrei Gurtov","doi":"10.1016/j.jnca.2024.104051","DOIUrl":null,"url":null,"abstract":"<div><div>Deep learning has been proven to be a powerful tool for addressing the most significant issues in cognitive radio networks, such as spectrum sensing, spectrum sharing, resource allocation, and security attacks. The utilization of deep learning techniques in cognitive radio networks can significantly enhance the network’s capability to adapt to changing environments and improve the overall system’s efficiency and reliability. As the demand for higher data rates and connectivity increases, B5G/6G wireless networks are expected to enable new services and applications significantly. Therefore, the significance of deep learning in addressing cognitive radio network challenges cannot be overstated. This review article provides valuable insights into potential solutions that can serve as a foundation for the development of future B5G/6G services. By leveraging the power of deep learning, cognitive radio networks can pave the way for the next generation of wireless networks capable of meeting the ever-increasing demands for higher data rates, improved reliability, and security.</div></div>","PeriodicalId":54784,"journal":{"name":"Journal of Network and Computer Applications","volume":"233 ","pages":"Article 104051"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning frameworks for cognitive radio networks: Review and open research challenges\",\"authors\":\"Senthil Kumar Jagatheesaperumal , Ijaz Ahmad , Marko Höyhtyä , Suleman Khan , Andrei Gurtov\",\"doi\":\"10.1016/j.jnca.2024.104051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deep learning has been proven to be a powerful tool for addressing the most significant issues in cognitive radio networks, such as spectrum sensing, spectrum sharing, resource allocation, and security attacks. The utilization of deep learning techniques in cognitive radio networks can significantly enhance the network’s capability to adapt to changing environments and improve the overall system’s efficiency and reliability. As the demand for higher data rates and connectivity increases, B5G/6G wireless networks are expected to enable new services and applications significantly. Therefore, the significance of deep learning in addressing cognitive radio network challenges cannot be overstated. This review article provides valuable insights into potential solutions that can serve as a foundation for the development of future B5G/6G services. By leveraging the power of deep learning, cognitive radio networks can pave the way for the next generation of wireless networks capable of meeting the ever-increasing demands for higher data rates, improved reliability, and security.</div></div>\",\"PeriodicalId\":54784,\"journal\":{\"name\":\"Journal of Network and Computer Applications\",\"volume\":\"233 \",\"pages\":\"Article 104051\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Network and Computer Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1084804524002285\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Network and Computer Applications","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1084804524002285","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Deep learning frameworks for cognitive radio networks: Review and open research challenges
Deep learning has been proven to be a powerful tool for addressing the most significant issues in cognitive radio networks, such as spectrum sensing, spectrum sharing, resource allocation, and security attacks. The utilization of deep learning techniques in cognitive radio networks can significantly enhance the network’s capability to adapt to changing environments and improve the overall system’s efficiency and reliability. As the demand for higher data rates and connectivity increases, B5G/6G wireless networks are expected to enable new services and applications significantly. Therefore, the significance of deep learning in addressing cognitive radio network challenges cannot be overstated. This review article provides valuable insights into potential solutions that can serve as a foundation for the development of future B5G/6G services. By leveraging the power of deep learning, cognitive radio networks can pave the way for the next generation of wireless networks capable of meeting the ever-increasing demands for higher data rates, improved reliability, and security.
期刊介绍:
The Journal of Network and Computer Applications welcomes research contributions, surveys, and notes in all areas relating to computer networks and applications thereof. Sample topics include new design techniques, interesting or novel applications, components or standards; computer networks with tools such as WWW; emerging standards for internet protocols; Wireless networks; Mobile Computing; emerging computing models such as cloud computing, grid computing; applications of networked systems for remote collaboration and telemedicine, etc. The journal is abstracted and indexed in Scopus, Engineering Index, Web of Science, Science Citation Index Expanded and INSPEC.