奥斯特洛夫斯基-瓦赫年科方程的孤子解析

IF 2.7 3区 数学 Q1 MATHEMATICS, APPLIED
Ruihong Ma, Engui Fan
{"title":"奥斯特洛夫斯基-瓦赫年科方程的孤子解析","authors":"Ruihong Ma,&nbsp;Engui Fan","doi":"10.1016/j.physd.2024.134416","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the Cauchy problem of the Ostrovsky–Vakhnenko (OV) equation expressed in the new variables <span><math><mrow><mo>(</mo><mi>y</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></math></span> <span><span><span><math><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mi>q</mi><msub><mrow><mrow><mo>(</mo><mo>log</mo><mi>q</mi><mo>)</mo></mrow></mrow><mrow><mi>y</mi><mi>τ</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>=</mo><mn>0</mn></mrow></math></span></span></span> with Schwartz initial data <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span> which supports smooth and single-valued solitons. It is shown that the solution to the Cauchy problem for the OV equation can be characterized by a 3 × 3 matrix Riemann–Hilbert (RH) problem. Furthermore, by employing the <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>-steepest descent method to deform the RH problem into solvable models, we derive the soliton resolution for the OV equation across two space–time regions: <span><math><mrow><mi>y</mi><mo>/</mo><mi>τ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>y</mi><mo>/</mo><mi>τ</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>. This result also implies that the <span><math><mi>N</mi></math></span>-soliton solutions of the OV equation in variables <span><math><mrow><mo>(</mo><mi>y</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></math></span> are asymptotically stable.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"470 ","pages":"Article 134416"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soliton resolution for the Ostrovsky–Vakhnenko equation\",\"authors\":\"Ruihong Ma,&nbsp;Engui Fan\",\"doi\":\"10.1016/j.physd.2024.134416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the Cauchy problem of the Ostrovsky–Vakhnenko (OV) equation expressed in the new variables <span><math><mrow><mo>(</mo><mi>y</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></math></span> <span><span><span><math><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mi>q</mi><msub><mrow><mrow><mo>(</mo><mo>log</mo><mi>q</mi><mo>)</mo></mrow></mrow><mrow><mi>y</mi><mi>τ</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>=</mo><mn>0</mn></mrow></math></span></span></span> with Schwartz initial data <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span> which supports smooth and single-valued solitons. It is shown that the solution to the Cauchy problem for the OV equation can be characterized by a 3 × 3 matrix Riemann–Hilbert (RH) problem. Furthermore, by employing the <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>-steepest descent method to deform the RH problem into solvable models, we derive the soliton resolution for the OV equation across two space–time regions: <span><math><mrow><mi>y</mi><mo>/</mo><mi>τ</mi><mo>&gt;</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>y</mi><mo>/</mo><mi>τ</mi><mo>&lt;</mo><mn>0</mn></mrow></math></span>. This result also implies that the <span><math><mi>N</mi></math></span>-soliton solutions of the OV equation in variables <span><math><mrow><mo>(</mo><mi>y</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></math></span> are asymptotically stable.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"470 \",\"pages\":\"Article 134416\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016727892400366X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892400366X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是以新变量 (y,τ) q3-q(logq)yτ-1=0 表示的奥斯特洛夫斯基-瓦赫年科方程(OV)的考奇问题,其初始数据为施瓦茨 q0(y)>0,支持光滑的单值孤子。研究表明,OV 方程的考奇问题解可以用一个 3 × 3 矩阵黎曼-希尔伯特(RH)问题来表征。此外,通过使用 ∂̄-steepest descent 方法将 RH 问题变形为可解模型,我们推导出了 OV 方程在两个时空区域的孤子分辨率:y/τ>0 和 y/τ<0。这一结果还意味着,OV方程在变量(y,τ)中的N个孤子解是渐近稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Soliton resolution for the Ostrovsky–Vakhnenko equation
We consider the Cauchy problem of the Ostrovsky–Vakhnenko (OV) equation expressed in the new variables (y,τ) q3q(logq)yτ1=0 with Schwartz initial data q0(y)>0 which supports smooth and single-valued solitons. It is shown that the solution to the Cauchy problem for the OV equation can be characterized by a 3 × 3 matrix Riemann–Hilbert (RH) problem. Furthermore, by employing the ̄-steepest descent method to deform the RH problem into solvable models, we derive the soliton resolution for the OV equation across two space–time regions: y/τ>0 and y/τ<0. This result also implies that the N-soliton solutions of the OV equation in variables (y,τ) are asymptotically stable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信