{"title":"奥斯特洛夫斯基-瓦赫年科方程的孤子解析","authors":"Ruihong Ma, Engui Fan","doi":"10.1016/j.physd.2024.134416","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the Cauchy problem of the Ostrovsky–Vakhnenko (OV) equation expressed in the new variables <span><math><mrow><mo>(</mo><mi>y</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></math></span> <span><span><span><math><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mi>q</mi><msub><mrow><mrow><mo>(</mo><mo>log</mo><mi>q</mi><mo>)</mo></mrow></mrow><mrow><mi>y</mi><mi>τ</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>=</mo><mn>0</mn></mrow></math></span></span></span> with Schwartz initial data <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span> which supports smooth and single-valued solitons. It is shown that the solution to the Cauchy problem for the OV equation can be characterized by a 3 × 3 matrix Riemann–Hilbert (RH) problem. Furthermore, by employing the <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>-steepest descent method to deform the RH problem into solvable models, we derive the soliton resolution for the OV equation across two space–time regions: <span><math><mrow><mi>y</mi><mo>/</mo><mi>τ</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>y</mi><mo>/</mo><mi>τ</mi><mo><</mo><mn>0</mn></mrow></math></span>. This result also implies that the <span><math><mi>N</mi></math></span>-soliton solutions of the OV equation in variables <span><math><mrow><mo>(</mo><mi>y</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></math></span> are asymptotically stable.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"470 ","pages":"Article 134416"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soliton resolution for the Ostrovsky–Vakhnenko equation\",\"authors\":\"Ruihong Ma, Engui Fan\",\"doi\":\"10.1016/j.physd.2024.134416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We consider the Cauchy problem of the Ostrovsky–Vakhnenko (OV) equation expressed in the new variables <span><math><mrow><mo>(</mo><mi>y</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></math></span> <span><span><span><math><mrow><msup><mrow><mi>q</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>−</mo><mi>q</mi><msub><mrow><mrow><mo>(</mo><mo>log</mo><mi>q</mi><mo>)</mo></mrow></mrow><mrow><mi>y</mi><mi>τ</mi></mrow></msub><mo>−</mo><mn>1</mn><mo>=</mo><mn>0</mn></mrow></math></span></span></span> with Schwartz initial data <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>0</mn></mrow></msub><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>></mo><mn>0</mn></mrow></math></span> which supports smooth and single-valued solitons. It is shown that the solution to the Cauchy problem for the OV equation can be characterized by a 3 × 3 matrix Riemann–Hilbert (RH) problem. Furthermore, by employing the <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>-steepest descent method to deform the RH problem into solvable models, we derive the soliton resolution for the OV equation across two space–time regions: <span><math><mrow><mi>y</mi><mo>/</mo><mi>τ</mi><mo>></mo><mn>0</mn></mrow></math></span> and <span><math><mrow><mi>y</mi><mo>/</mo><mi>τ</mi><mo><</mo><mn>0</mn></mrow></math></span>. This result also implies that the <span><math><mi>N</mi></math></span>-soliton solutions of the OV equation in variables <span><math><mrow><mo>(</mo><mi>y</mi><mo>,</mo><mi>τ</mi><mo>)</mo></mrow></math></span> are asymptotically stable.</div></div>\",\"PeriodicalId\":20050,\"journal\":{\"name\":\"Physica D: Nonlinear Phenomena\",\"volume\":\"470 \",\"pages\":\"Article 134416\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica D: Nonlinear Phenomena\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016727892400366X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727892400366X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Soliton resolution for the Ostrovsky–Vakhnenko equation
We consider the Cauchy problem of the Ostrovsky–Vakhnenko (OV) equation expressed in the new variables with Schwartz initial data which supports smooth and single-valued solitons. It is shown that the solution to the Cauchy problem for the OV equation can be characterized by a 3 × 3 matrix Riemann–Hilbert (RH) problem. Furthermore, by employing the -steepest descent method to deform the RH problem into solvable models, we derive the soliton resolution for the OV equation across two space–time regions: and . This result also implies that the -soliton solutions of the OV equation in variables are asymptotically stable.
期刊介绍:
Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.